Quantum Communication – Tutorial for IT Specialists Part 1 (Dr. Peter Holleczek) / german language

Symbolic picture for the article. The link opens the image in a large view.

Quantum Communication - Tutorial for IT Specialists (Dr. Peter Holleczek) / german language

The history of the development of data communications has actually been told. Progress is currently limited to a slight increase in transmission rates. Progress is hampered technically by ever more arduous miniaturization and organizationally by ever more stringent security requirements. Leap innovations are again lacking.

One comes, albeit from physics, from quantum physics. Quanta, especially light quanta (photons) on the one hand make miniaturization / “atomization” appear from a new angle and on the other hand have properties that are of extreme value in the encryption of data.

The tutorial is addressed to IT specialists and tries to be simple in small portions. It should help to imagine the unfamiliar behavior pattern of quanta and to better understand the current development.

After an inevitable excursion into quantum mechanics and photonics, it offers insight into the generation and properties of photons. Common encryption methods are presented. The state of the art in transmission properties is outlined.

Schrödinger’s cat may not be missing in all this, of course.

Dr. Peter Holleczek

https://www.fau.tv/course/id/2594 

Password: TuQUANKOMM-WiSe2021

all parts

other sources

#populär

Representing QuBit States
QBER

BB84 and Ekert91 protocols | Quantiki
https://quantiki.org/wiki/bb84-and-ekert91-protocols

Satellite

Physics World
China launches world‘s first quantum science satellite – Physics World
https://physicsworld.com/a/china-launches-worlds-first-quantum-science-satellite/

Fiber

Löffler W., Euser T. G., Eliel E. R., et al.
Fiber transport of spatially entangled photons
https://pubmed.ncbi.nlm.nih.gov/21770558/

Fermilab and partners achieve sustained, high-fidelity quantum teleportation
https://news.fnal.gov/2020/12/fermilab-and-partners-achieve-sustained-high-fidelity-quantum-teleportation/

The Qubit Report
U.S. Scientists Demonstrate 44km Fiber Transmission of Photon Qubits
https://qubitreport.com/quantum-computing-technology-and-hardware/2020/12/17/u-s-scientists-demonstrate-44km-fiber-transmission-of-photon-qubits/

Quantum network
https://en.wikipedia.org/w/index.php?title=Quantum_network&oldid=1075498430

#Skript

strategisch

Kuhn A., Smith J., Keller M., et al.
Short Roadmap to Quantum Networking by Light-Matter Interfacing
https://www.physics.ox.ac.uk/system/files/file_attachments/roadmap-to-quantum-networking-44796.pdf

QM
QKD

Anleitung zum Versuch Quantenkryptographie mit einzelnen Photonen – QKD via BB84
https://www.physik.hu-berlin.de/de/nano/lehre/f-praktikum/qkd/versuchsanleitung-qkd_2017-01-02.pdf

Tamaki K., Koashi M., Lütkenhaus N., et al.
Unconditional security of the Bennett 1992 quantum key-distribution protocol over noisy and lossy channels
https://qipconference.org/2004/presentations/tamaki.pdf

Hjelme D. Roar, Lydersen L., Makarov V.
Quantum cryptography
https://arxiv.org/pdf/1108.1718.pdf

Chekhova M.
Lecture 12
https://mpl.mpg.de/fileadmin/user_upload/Chekhova_Research_Group/Lecture_4_12.pdf

Kohärenz

Hofmann M.
Was ist Dekohärenz?
https://www.physik.hu-berlin.de/de/nano/lehre/grundlagen-qp/Hofmann.pdf

Strunz W. T.
Dekohärenz in offenen Quantensystemen
http://www.iap.tu-darmstadt.de/tqp/papers/StrAlbHaa02.pdf

Coalesce
Indistinguishable Photons
Dots

Undeutsch G.
Advanced interferometry and entanglement measurement of quantum light from GaAs quantum dots
https://epub.jku.at/obvulihs/download/pdf/6429488?originalFilename=true

#wissenschaftlich

[Hea06] Hiskett P. A., Rosenberg D., Peterson C. G., et al.
Long-distance quantum key distribution in optical fibre
https://www.researchgate.net/publication/231085748_Long-distance_quantum_key_distribution_in_optical_fibre

[AGM06] Acín A., Gisin N., Masanes L.
From Bell‘s theorem to secure quantum key distribution
https://arxiv.org/pdf/quant-ph/0510094

[Aea21] Adcock J. C., Bao J., Chi Y., et al.
Advances in Silicon Quantum Photonics

[Aea10] ADENIER G., WATANABE N., Khrennikov A. Yu.
A FAIR SAMPLING TEST FOR EKERT PROTOCOL

[An13] Anghel C.
Research, Development and Simulation of Quantum Cryptographic Protocols
https://eejournal.ktu.lt/index.php/elt/article/view/1700

[An21] Anghel C.
A Comparison of Several Implementations of B92 Quantum Key Distribution Protocol
https://www.preprints.org/manuscript/202102.0486/v1

[BHK05] Barrett J., Hardy L., Kent A.
No signaling and quantum key distribution
https://arxiv.org/pdf/quant-ph/0405101

[B64] Bell J. S.
ON THE EINSTEIN PODOLSKY ROSEN PARADOX*
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf

[Bea91] Bennett C. H.
Experimental Quantum Cryptography
http://cs.uccs.edu/~cs691/crypto/BBBSS92.pdf

[BB84] Bennett C. H., Brassard G.
Quantum cryptography: Public key distribution and coin tossing

[B08] Brumfiel G.
Physicists spooked by faster-than-light information transfer
https://www.nature.com/articles/news.2008.1038

[Cea20] Cao Y., Li Y.-H., Yang K.-X., et al.
Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution

[CH18] Christopher H.
Quantenphysik und Esoterik
https://www.physikdidaktik.info/data/_uploaded/Delta_Phi_B/2018/Hinterhauser(2018)Quantenphysik_und_Esoterik_DeltaPhiB.pdf

[Cea17] Chun H., Choi I., Faulkner G., et al.
Handheld free space quantum key distribution with dynamic motion compensation
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-6-6784&id=361628

[Cea69] Clauser J. F., Horne M. A., Shimony A., et al.
Proposed Experiment to Test Local Hidden-Variable Theories
https://www.researchgate.net/publication/228109500_Proposed_Experiment_to_Test_Local_Hidden-Variable_Theories

[Cea10] Curty M., Ma X., Lo H.-K., et al.
Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals
https://arxiv.org/pdf/1009.3830

[Dea08] Dixon A. R., Yuan Z. L., Dynes J. F., et al.
Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate
https://arxiv.org/pdf/0810.1069

[EFMea11] Eisaman M. D., Fan J., Migdall A., et al.
Invited review article: Single-photon sources and detectors

[E91] Ekert A. K.
Quantum cryptography based on Bell‘s theorem
https://cqi.inf.usi.ch/qic/91_Ekert.pdf

[Gea04] Gobby C., Yuan Z. L., Shields A. J.
Quantum key distribution over 122 km of standard telecom fiber
https://arxiv.org/ftp/quant-ph/papers/0412/0412171.pdf

[Gu16] Gupta M. K.
Minimizing Decoherence in Optical Fiber for Long Distance Quantum Communication
https://digitalcommons.lsu.edu/gradschool_dissertations/2314

[Hea02] Hughes R. J., Nordholt J. E., Derkacs D., et al.
Practical free-space quantum key distribution over 10 km in daylight and at night
https://arxiv.org/ftp/quant-ph/papers/0206/0206092.pdf

[Il07] Ilic N.
The Ekert Protocol
https://www.ux1.eiu.edu/~nilic/Nina’s-article.pdf

[JBS19] Jo Y., Bae K., Son W.
Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states
https://www.nature.com/articles/s41598-018-36513-x

[Kea19] Krutyanskiy V., Meraner M., Schupp J., et al.
Light-matter entanglement over 50 km of optical fibre
https://www.nature.com/articles/s41534-019-0186-3

[L02] Larsson J.-Å.
A practical Trojan Horse for Bell-inequality-based quantum cryptography
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A259439&dswid=-894

[Lea17] Liu W.-Y., Zhong X.-F., Wu T., et al.
Experimental free-space quantum key distribution with efficient error correction
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-10-10716&id=363574

[Lea10] Liu Y., Chen T.-Y., Wang J., et al.
Decoy-state quantum key distribution with polarized photons over 200 km
https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-8-8587&id=198004

[LS14] Lopes M., Sarwade N.
Cryptography from Quantum mechanical viewpoint
https://arxiv.org/pdf/1407.2357

[Luea13] Lucamarini M., Patel K. A., Dynes J. F., et al.
Efficient decoy-state quantum key distribution with quantified security
https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-21-24550&id=268752

[Lü99] Lütkenhaus N.
Estimates for practical quantum cryptography
https://arxiv.org/pdf/quant-ph/9806008.pdf

[Moea19] Moreau P.-A., Toninelli E., Gregory T., et al.
Imaging Bell-type nonlocal behavior

[NJea13] Nisbet-Jones P. B. R., Dilley J., Holleczek A., et al.
Photonic qubits, qutrits and ququads accurately prepared and delivered on demand
https://iopscience.iop.org/article/10.1088/1367-2630/15/5/053007

[NJea11] Nisbet-Jones P. B. R., Dilley J., Ljunggren D., et al.
Highly efficient source for indistinguishable single photons of controlled shape
https://iopscience.iop.org/article/10.1088/1367-2630/13/10/103036

[No2017] Nowierski S. J.
Fiber Transport of Entangled Photonic Qudits

[Rea18] Rabinovich W. S., Mahon R., Ferraro M. S., et al.
Free space quantum key distribution using modulating retro-reflectors
https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-9-11331&id=385699

[Rea18-2] Rauch D., Handsteiner J., Hochrainer A., et al.
Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars

[Rea09] Ribordy G., Gautier J.-D., Gisin N., et al.
Fast and user-friendly quantum key distribution
https://arxiv.org/ftp/quant-ph/papers/9905/9905056.pdf

[SS21] Scheel S., Szameit A.
Photonen im Spiegel der Zeit

[SM07] Schmitt-Manderbach T., Weier H., Fürst M., et al.
Experimental demonstration of free-space decoy-state quantum key distribution over 144 km

[Sch36] Schrödinger E.
Die gegenwärtige Situation in der Quantenmechanik
https://link.springer.com/article/10.1007/BF01491891

[Sea16] Somaschi N., Giesz V., Santis L. de, et al.
Near-optimal single-photon sources in the solid state
https://www.nature.com/articles/nphoton.2016.23

[Tea15] Takesue H., Dyer S. D., Stevens M. J., et al.
Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors
https://opg.optica.org/optica/fulltext.cfm?uri=optica-2-10-832&id=326929

[DH12] Wolfgang Dür, Stefan Heusler
Was man vom einzelnen Qubit über Quantenphysik lernen kann
http://www.phydid.de/index.php/phydid/article/view/311

[Yea16] Yin H.-L., Chen T.-Y., Yu Z.-W., et al.
Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.117.190501

[Yea17] Yin J., Cao Y., Li Y.-H., et al.
Satellite-Based Entanglement Distribution Over 1200 kilometers
https://arxiv.org/pdf/1707.01339

[ZR07] Zhao S., Raedt H. de
Event-by-event Simulation of Quantum Cryptography Protocols
https://arxiv.org/pdf/0708.1734