Quantenkommunikation I – Tutorial für IT-Spezialisten Teil 1 (Dr. Peter Holleczek)

Symbolbild zum Artikel. Der Link öffnet das Bild in einer großen Anzeige.

Quantenkommunikation I - Grundlagen

Die Entwicklungsgeschichte der Datenkommunikation ist eigentlich auserzählt. Der Fortschritt beschränkt sich derzeit auf leichte Fortschreibung der Übertragungsraten. Gehemmt wird der Fortschritt technisch durch die immer mühevollere Miniaturisierung und organisatorisch durch immer höhere Anforderungen an die Sicherheit. Es fehlen wieder Sprunginnovationen.

Eine kommt, allerdings aus der Physik, aus der Quantenphysik. Quanten, insbesondere Lichtquanten (Photonen) lassen einerseits die Miniaturisierung / „Atomisierung“ unter einem neuen Blickwinkel erscheinen und haben andererseits Eigenschaften, die bei der Verschlüsselung von Daten von äußerstem Wert sind.

Das Tutorial wendet sich an IT-Spezialisten und versucht sich in einfachen kleinen Portionen. Es soll helfen, das ungewohnte Verhaltensmuster von Quanten sich vorstellen und die aktuelle Entwicklung besser einordnen zu können.

Nach einem unvermeidlichen Ausflug in die Quantenmechanik und Photonik bietet es Einblick in die Erzeugung und Eigenschaften von Photonen. Gängige Verschlüsselungsmethoden werden vorgestellt. Der Stand der Kunst bei Übertragungseigenschaften wird skizziert.

Schrödingers Katze darf bei allem natürlich nicht fehlen.

Dr. Peter Holleczek

https://www.fau.tv/course/id/2594 

Passwort: TuQUANKOMM-WiSe2021

alle Teile

weitere Quellen:

#populär

Representing QuBit States
QBER

quantiki
BB84 and Ekert91 protocols
https://quantiki.org/wiki/bb84-and-ekert91-protocols

Satellite

physicsworld
China launches world‘s first quantum science satellite – Physics World
https://physicsworld.com/a/china-launches-worlds-first-quantum-science-satellite/

Fiber

W. Löffler et al.
Fiber transport of spatially entangled photons
https://pubmed.ncbi.nlm.nih.gov/21770558/

Fermilab and partners achieve sustained, high-fidelity quantum teleportation
https://news.fnal.gov/2020/12/fermilab-and-partners-achieve-sustained-high-fidelity-quantum-teleportation/

Quantum network
https://en.wikipedia.org/w/index.php?title=Quantum_network&oldid=1075498430

#Skript

strategisch

A. Kuhn et al.
Short Roadmap to Quantum Networking by Light-Matter Interfacing
https://www.physics.ox.ac.uk/system/files/file_attachments/roadmap-to-quantum-networking-44796.pdf

QM
QKD

Anleitung zum Versuch Quantenkryptographie mit einzelnen Photonen – QKD via BB84
https://www.physik.hu-berlin.de/de/nano/lehre/f-praktikum/qkd/versuchsanleitung-qkd_2017-01-02.pdf

K. Tamaki et al.
Unconditional security of the Bennett 1992 quantum key-distribution protocol over noisy and lossy channels
https://qipconference.org/2004/presentations/tamaki.pdf

D. R. Hjelme et al.
Quantum cryptography
https://arxiv.org/pdf/1108.1718.pdf

M. Chekhova
Lecture 12
https://mpl.mpg.de/fileadmin/user_upload/Chekhova_Research_Group/Lecture_4_12.pdf

Kohärenz
Coalesce
Indistinguishable Photons
Dots

G. Undeutsch
Advanced interferometry and entanglement measurement of quantum light from GaAs quantum dots
https://epub.jku.at/obvulihs/download/pdf/6429488?originalFilename=true

#wissenschaftlich

[Hea06] P. A. Hiskett et al.
Long-distance quantum key distribution in optical fibre
https://www.researchgate.net/publication/231085748_Long-distance_quantum_key_distribution_in_optical_fibre

[AGM06] A. Acín et al.
From Bell‘s theorem to secure quantum key distribution
https://arxiv.org/pdf/quant-ph/0510094

[Aea21] J. C. Adcock et al.
Advances in Silicon Quantum Photonics

[Aea10] G. Adenier et al.
A FAIR SAMPLING TEST FOR EKERT PROTOCOL

[An13] C. Anghel
Research, Development and Simulation of Quantum Cryptographic Protocols
https://eejournal.ktu.lt/index.php/elt/article/view/1700

[An21] C. Anghel
A Comparison of Several Implementations of B92 Quantum Key Distribution Protocol
https://www.preprints.org/manuscript/202102.0486/v1

[BHK05] J. Barrett et al.
No signaling and quantum key distribution
https://arxiv.org/pdf/quant-ph/0405101

[B64] J. S. Bell
ON THE EINSTEIN PODOLSKY ROSEN PARADOX*
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf

[Bea91] C. H. Bennett
Experimental Quantum Cryptography
http://cs.uccs.edu/~cs691/crypto/BBBSS92.pdf

[BB84] C. H. Bennett, G. Brassard
Quantum cryptography: Public key distribution and coin tossing

[B08] G. Brumfiel
Physicists spooked by faster-than-light information transfer
https://www.nature.com/articles/news.2008.1038

[Cea20] Y. Cao et al.
Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution

[CH18] H. Christopher
Quantenphysik und Esoterik
https://www.physikdidaktik.info/data/_uploaded/Delta_Phi_B/2018/Hinterhauser(2018)Quantenphysik_und_Esoterik_DeltaPhiB.pdf

[Cea17] H. Chun et al.
Handheld free space quantum key distribution with dynamic motion compensation
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-6-6784&id=361628

[Cea69] J. F. Clauser et al.
Proposed Experiment to Test Local Hidden-Variable Theories
https://www.researchgate.net/publication/228109500_Proposed_Experiment_to_Test_Local_Hidden-Variable_Theories

[Cea10] M. Curty et al.
Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals
https://arxiv.org/pdf/1009.3830

[Dea08] A. R. Dixon et al.
Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate
https://arxiv.org/pdf/0810.1069

[EFMea11] M. D. Eisaman et al.
Invited review article: Single-photon sources and detectors

[E91] A. K. Ekert
Quantum cryptography based on Bell‘s theorem
https://cqi.inf.usi.ch/qic/91_Ekert.pdf

[Gea04] C. Gobby et al.
Quantum key distribution over 122 km of standard telecom fiber
https://arxiv.org/ftp/quant-ph/papers/0412/0412171.pdf

[Gu16] M. K. Gupta
Minimizing Decoherence in Optical Fiber for Long Distance Quantum Communication
https://digitalcommons.lsu.edu/gradschool_dissertations/2314

[Hea02] R. J. Hughes et al.
Practical free-space quantum key distribution over 10 km in daylight and at night
https://arxiv.org/ftp/quant-ph/papers/0206/0206092.pdf

[Il07] N. Ilic N.
The Ekert Protocol

[JBS19] Y. Jo et al.
Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states
https://www.nature.com/articles/s41598-018-36513-x

[Kea19] V. Krutyanskiy et al.
Light-matter entanglement over 50 km of optical fibre
https://www.nature.com/articles/s41534-019-0186-3

[L02] J.-Å. Larsson
A practical Trojan Horse for Bell-inequality-based quantum cryptography
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A259439&dswid=-894

[Lea17] W.-Y. Liu et al.
Experimental free-space quantum key distribution with efficient error correction
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-10-10716&id=363574

[Lea10] Y. Liu et al.
Decoy-state quantum key distribution with polarized photons over 200 km
https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-8-8587&id=198004

[LS14] M. Lopes, N. Sarwade
Cryptography from Quantum mechanical viewpoint
https://arxiv.org/pdf/1407.2357

[Luea13] M. Lucamarini et al.
Efficient decoy-state quantum key distribution with quantified security
https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-21-24550&id=268752

[Lü99] N. Lütkenhaus
Estimates for practical quantum cryptography
https://arxiv.org/pdf/quant-ph/9806008.pdf

[Moea19] P.-A. Moreau et al.
Imaging Bell-type nonlocal behavior

[NJea13] Nisbet-Jones P. B. R., Dilley J., Holleczek A., et al.
Photonic qubits, qutrits and ququads accurately prepared and delivered on demand
https://iopscience.iop.org/article/10.1088/1367-2630/15/5/053007

[NJea11] P. B. R. Nisbet-Jones et al.
Highly efficient source for indistinguishable single photons of controlled shape
https://iopscience.iop.org/article/10.1088/1367-2630/13/10/103036

[No2017] S. J. Nowierski
Fiber Transport of Entangled Photonic Qudits

[Rea18] W. S. Rabinovich et al.
Free space quantum key distribution using modulating retro-reflectors
https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-9-11331&id=385699

[Rea18-2] D. Rauch et al.
Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars

[Rea09] G. Ribordy et al.
Fast and user-friendly quantum key distribution
https://arxiv.org/ftp/quant-ph/papers/9905/9905056.pdf

[SS21] S. Scheel, A. Szameit
Photonen im Spiegel der Zeit

[SM07] T. Schmitt-Manderbach et al.
Experimental demonstration of free-space decoy-state quantum key distribution over 144 km

[Sch36] E. Schrödinger
Die gegenwärtige Situation in der Quantenmechanik
https://link.springer.com/article/10.1007/BF01491891

[Sea16] N. Somaschi et al.
Near-optimal single-photon sources in the solid state
https://www.nature.com/articles/nphoton.2016.23

[Tea15] H. Takesue et al.
Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors
https://opg.optica.org/optica/fulltext.cfm?uri=optica-2-10-832&id=326929

[DH12] D. Wolfgang, S. Heusler
Was man vom einzelnen Qubit über Quantenphysik lernen kann
http://www.phydid.de/index.php/phydid/article/view/311

[Yea16] H.-L. Yin et al.
Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.117.190501

[Yea17] J. Yin et al.
Satellite-Based Entanglement Distribution Over 1200 kilometers
https://arxiv.org/pdf/1707.01339

[ZR07] S. Zhao, H. de Raedt
Event-by-event Simulation of Quantum Cryptography Protocols
https://arxiv.org/pdf/0708.1734