Quantenkommunikation – Tutorial für IT-Spezialisten (Dr. Peter Holleczek)

Symbolbild zum Artikel. Der Link öffnet das Bild in einer großen Anzeige.

Quantenkommunikation - Tutorial für IT-Spezialisten

Die Entwicklungsgeschichte der Datenkommunikation ist eigentlich auserzählt. Der Fortschritt beschränkt sich derzeit auf leichte Fortschreibung der Übertragungsraten. Gehemmt wird der Fortschritt technisch durch die immer mühevollere Miniaturisierung und organisatorisch durch immer höhere Anforderungen an die Sicherheit. Es fehlen wieder Sprunginnovationen.

Eine kommt, allerdings aus der Physik, aus der Quantenphysik. Quanten, insbesondere Lichtquanten (Photonen) lassen einerseits die Miniaturisierung / „Atomisierung“ unter einem neuen Blickwinkel erscheinen und haben andererseits Eigenschaften, die bei der Verschlüsselung von Daten von äußerstem Wert sind.

Das Tutorial wendet sich an IT-Spezialisten und versucht sich in einfachen kleinen Portionen. Es soll helfen, das ungewohnte Verhaltensmuster von Quanten sich vorstellen und die aktuelle Entwicklung besser einordnen zu können.

Nach einem unvermeidlichen Ausflug in die Quantenmechanik und Photonik bietet es Einblick in die Erzeugung und Eigenschaften von Photonen. Gängige Verschlüsselungsmethoden werden vorgestellt. Der Stand der Kunst bei Übertragungseigenschaften wird skizziert.

Schrödingers Katze darf bei allem natürlich nicht fehlen.

Dr. Peter Holleczek

https://www.fau.tv/course/id/2594 

Passwort: TuQUANKOMM-WiSe2021

weitere Quellen

#populär

Representing QuBit States
QBER

BB84 and Ekert91 protocols | Quantiki
https://quantiki.org/wiki/bb84-and-ekert91-protocols

Satellite

Physics World
China launches world‘s first quantum science satellite – Physics World
https://physicsworld.com/a/china-launches-worlds-first-quantum-science-satellite/

Fiber

Löffler W., Euser T. G., Eliel E. R., et al.
Fiber transport of spatially entangled photons
https://pubmed.ncbi.nlm.nih.gov/21770558/

Fermilab and partners achieve sustained, high-fidelity quantum teleportation
https://news.fnal.gov/2020/12/fermilab-and-partners-achieve-sustained-high-fidelity-quantum-teleportation/

The Qubit Report
U.S. Scientists Demonstrate 44km Fiber Transmission of Photon Qubits
https://qubitreport.com/quantum-computing-technology-and-hardware/2020/12/17/u-s-scientists-demonstrate-44km-fiber-transmission-of-photon-qubits/

Quantum network
https://en.wikipedia.org/w/index.php?title=Quantum_network&oldid=1075498430

#Skript

strategisch

Kuhn A., Smith J., Keller M., et al.
Short Roadmap to Quantum Networking by Light-Matter Interfacing
https://www.physics.ox.ac.uk/system/files/file_attachments/roadmap-to-quantum-networking-44796.pdf

QM
QKD

Anleitung zum Versuch Quantenkryptographie mit einzelnen Photonen – QKD via BB84
https://www.physik.hu-berlin.de/de/nano/lehre/f-praktikum/qkd/versuchsanleitung-qkd_2017-01-02.pdf

Tamaki K., Koashi M., Lütkenhaus N., et al.
Unconditional security of the Bennett 1992 quantum key-distribution protocol over noisy and lossy channels
https://qipconference.org/2004/presentations/tamaki.pdf

Hjelme D. Roar, Lydersen L., Makarov V.
Quantum cryptography
https://arxiv.org/pdf/1108.1718.pdf

Chekhova M.
Lecture 12
https://mpl.mpg.de/fileadmin/user_upload/Chekhova_Research_Group/Lecture_4_12.pdf

Kohärenz

Hofmann M.
Was ist Dekohärenz?
https://www.physik.hu-berlin.de/de/nano/lehre/grundlagen-qp/Hofmann.pdf

Strunz W. T.
Dekohärenz in offenen Quantensystemen
http://www.iap.tu-darmstadt.de/tqp/papers/StrAlbHaa02.pdf

Coalesce
Indistinguishable Photons
Dots

Undeutsch G.
Advanced interferometry and entanglement measurement of quantum light from GaAs quantum dots
https://epub.jku.at/obvulihs/download/pdf/6429488?originalFilename=true

#wissenschaftlich

[Hea06] Hiskett P. A., Rosenberg D., Peterson C. G., et al.
Long-distance quantum key distribution in optical fibre
https://www.researchgate.net/publication/231085748_Long-distance_quantum_key_distribution_in_optical_fibre

[AGM06] Acín A., Gisin N., Masanes L.
From Bell‘s theorem to secure quantum key distribution
https://arxiv.org/pdf/quant-ph/0510094

[Aea21] Adcock J. C., Bao J., Chi Y., et al.
Advances in Silicon Quantum Photonics

[Aea10] ADENIER G., WATANABE N., Khrennikov A. Yu.
A FAIR SAMPLING TEST FOR EKERT PROTOCOL

[An13] Anghel C.
Research, Development and Simulation of Quantum Cryptographic Protocols
https://eejournal.ktu.lt/index.php/elt/article/view/1700

[An21] Anghel C.
A Comparison of Several Implementations of B92 Quantum Key Distribution Protocol
https://www.preprints.org/manuscript/202102.0486/v1

[BHK05] Barrett J., Hardy L., Kent A.
No signaling and quantum key distribution
https://arxiv.org/pdf/quant-ph/0405101

[B64] Bell J. S.
ON THE EINSTEIN PODOLSKY ROSEN PARADOX*
https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf

[Bea91] Bennett C. H.
Experimental Quantum Cryptography
http://cs.uccs.edu/~cs691/crypto/BBBSS92.pdf

[BB84] Bennett C. H., Brassard G.
Quantum cryptography: Public key distribution and coin tossing

[B08] Brumfiel G.
Physicists spooked by faster-than-light information transfer
https://www.nature.com/articles/news.2008.1038

[Cea20] Cao Y., Li Y.-H., Yang K.-X., et al.
Long-Distance Free-Space Measurement-Device-Independent Quantum Key Distribution

[CH18] Christopher H.
Quantenphysik und Esoterik
https://www.physikdidaktik.info/data/_uploaded/Delta_Phi_B/2018/Hinterhauser(2018)Quantenphysik_und_Esoterik_DeltaPhiB.pdf

[Cea17] Chun H., Choi I., Faulkner G., et al.
Handheld free space quantum key distribution with dynamic motion compensation
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-6-6784&id=361628

[Cea69] Clauser J. F., Horne M. A., Shimony A., et al.
Proposed Experiment to Test Local Hidden-Variable Theories
https://www.researchgate.net/publication/228109500_Proposed_Experiment_to_Test_Local_Hidden-Variable_Theories

[Cea10] Curty M., Ma X., Lo H.-K., et al.
Passive sources for the Bennett-Brassard 1984 quantum-key-distribution protocol with practical signals
https://arxiv.org/pdf/1009.3830

[Dea08] Dixon A. R., Yuan Z. L., Dynes J. F., et al.
Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate
https://arxiv.org/pdf/0810.1069

[EFMea11] Eisaman M. D., Fan J., Migdall A., et al.
Invited review article: Single-photon sources and detectors

[E91] Ekert A. K.
Quantum cryptography based on Bell‘s theorem
https://cqi.inf.usi.ch/qic/91_Ekert.pdf

[Gea04] Gobby C., Yuan Z. L., Shields A. J.
Quantum key distribution over 122 km of standard telecom fiber
https://arxiv.org/ftp/quant-ph/papers/0412/0412171.pdf

[Gu16] Gupta M. K.
Minimizing Decoherence in Optical Fiber for Long Distance Quantum Communication
https://digitalcommons.lsu.edu/gradschool_dissertations/2314

[Hea02] Hughes R. J., Nordholt J. E., Derkacs D., et al.
Practical free-space quantum key distribution over 10 km in daylight and at night
https://arxiv.org/ftp/quant-ph/papers/0206/0206092.pdf

[Il07] Ilic N.
The Ekert Protocol
https://www.ux1.eiu.edu/~nilic/Nina’s-article.pdf

[JBS19] Jo Y., Bae K., Son W.
Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states
https://www.nature.com/articles/s41598-018-36513-x

[Kea19] Krutyanskiy V., Meraner M., Schupp J., et al.
Light-matter entanglement over 50 km of optical fibre
https://www.nature.com/articles/s41534-019-0186-3

[L02] Larsson J.-Å.
A practical Trojan Horse for Bell-inequality-based quantum cryptography
http://liu.diva-portal.org/smash/record.jsf?pid=diva2%3A259439&dswid=-894

[Lea17] Liu W.-Y., Zhong X.-F., Wu T., et al.
Experimental free-space quantum key distribution with efficient error correction
https://opg.optica.org/oe/fulltext.cfm?uri=oe-25-10-10716&id=363574

[Lea10] Liu Y., Chen T.-Y., Wang J., et al.
Decoy-state quantum key distribution with polarized photons over 200 km
https://opg.optica.org/oe/fulltext.cfm?uri=oe-18-8-8587&id=198004

[LS14] Lopes M., Sarwade N.
Cryptography from Quantum mechanical viewpoint
https://arxiv.org/pdf/1407.2357

[Luea13] Lucamarini M., Patel K. A., Dynes J. F., et al.
Efficient decoy-state quantum key distribution with quantified security
https://opg.optica.org/oe/fulltext.cfm?uri=oe-21-21-24550&id=268752

[Lü99] Lütkenhaus N.
Estimates for practical quantum cryptography
https://arxiv.org/pdf/quant-ph/9806008.pdf

[Moea19] Moreau P.-A., Toninelli E., Gregory T., et al.
Imaging Bell-type nonlocal behavior

[NJea13] Nisbet-Jones P. B. R., Dilley J., Holleczek A., et al.
Photonic qubits, qutrits and ququads accurately prepared and delivered on demand
https://iopscience.iop.org/article/10.1088/1367-2630/15/5/053007

[NJea11] Nisbet-Jones P. B. R., Dilley J., Ljunggren D., et al.
Highly efficient source for indistinguishable single photons of controlled shape
https://iopscience.iop.org/article/10.1088/1367-2630/13/10/103036

[No2017] Nowierski S. J.
Fiber Transport of Entangled Photonic Qudits

[Rea18] Rabinovich W. S., Mahon R., Ferraro M. S., et al.
Free space quantum key distribution using modulating retro-reflectors
https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-9-11331&id=385699

[Rea18-2] Rauch D., Handsteiner J., Hochrainer A., et al.
Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars

[Rea09] Ribordy G., Gautier J.-D., Gisin N., et al.
Fast and user-friendly quantum key distribution
https://arxiv.org/ftp/quant-ph/papers/9905/9905056.pdf

[SS21] Scheel S., Szameit A.
Photonen im Spiegel der Zeit

[SM07] Schmitt-Manderbach T., Weier H., Fürst M., et al.
Experimental demonstration of free-space decoy-state quantum key distribution over 144 km

[Sch36] Schrödinger E.
Die gegenwärtige Situation in der Quantenmechanik
https://link.springer.com/article/10.1007/BF01491891

[Sea16] Somaschi N., Giesz V., Santis L. de, et al.
Near-optimal single-photon sources in the solid state
https://www.nature.com/articles/nphoton.2016.23

[Tea15] Takesue H., Dyer S. D., Stevens M. J., et al.
Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors
https://opg.optica.org/optica/fulltext.cfm?uri=optica-2-10-832&id=326929

[DH12] Wolfgang Dür, Stefan Heusler
Was man vom einzelnen Qubit über Quantenphysik lernen kann
http://www.phydid.de/index.php/phydid/article/view/311

[Yea16] Yin H.-L., Chen T.-Y., Yu Z.-W., et al.
Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.117.190501

[Yea17] Yin J., Cao Y., Li Y.-H., et al.
Satellite-Based Entanglement Distribution Over 1200 kilometers
https://arxiv.org/pdf/1707.01339

[ZR07] Zhao S., Raedt H. de
Event-by-event Simulation of Quantum Cryptography Protocols
https://arxiv.org/pdf/0708.1734