Quantum Networks – Between Reality and Future

Symbolic picture for the article. The link opens the image in a large view.

Quantum Networks – Between Reality and Future

Quantum Networks – Between Reality and Future in DFN-Mitteilungen 100 page 34

They have long since ceased to be mere dreams of the future, but are mostly in an experimental state – quantum networks. Our author Dr. Peter Kaufmann and our author Dr. Susanne Naegele-Jackson once again enter the world of qubits and explain which structures, network components and devices are necessary and why heterogeneity in particular plays a major role in the field of quantum network architecture.

Peter Kaufmann, Susanne Naegele-Jackson. Quantennetze – zwischen Realität und Zukunft. In: DFN Mitteilungen Ausgabe 100, Dezember 2021

other sources

Physicists link quantum memories across the longest distance ever
https://www.livescience.com/quantum-memory-entangled-far.html

INQNET – press release
https://inqnet.caltech.edu/Press-PRXQ-dec142020.html

QuISP
https://aqua.sfc.wide.ad.jp/quisp_website/

CORDIS
https://cordis.europa.eu/project/id/951787/de

QKDNetSim – Quantum Key Distribution Network Simulation Module for NS-3
https://www.qkdnetsim.info/

QuNET-alpha — KIS Website
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/qunet-alpha

QuNET-beta — KIS Website
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/qunet-beta

WiN-Labor
https://www.win-labor.dfn.de/

Abobeih M. H., Cramer J., Bakker M. A., Kalb N., Markham M., Twitchen D. J., Taminiau T. H.
One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
https://www.nature.com/articles/s41467-018-04916-z

Bhaskar M. K., Riedinger R., Machielse B., Levonian D. S., Nguyen C. T., Knall E. N., Park H., Englund D., Lončar M., Sukachev D. D., Lukin M. D.
Experimental demonstration of memory-enhanced quantum communication
https://www.nature.com/articles/s41586-020-2103-5

California Institute of Technology
Quantum Internet Tested at Caltech and Fermilab
https://www.caltech.edu/about/news/quantum-internet-tested-caltech-and-fermilab

Dahlberg A., Skrzypczyk M., Coopmans T., Wubben L., Rozpędek F., Pompili M., Stolk A., Pawełczak P., Knegjens R., Oliveira Filho J. de, Hanson R., Wehner S.
A link layer protocol for quantum networks
https://arxiv.org/pdf/1903.09778.pdf

GitHub
GitHub – sfc-aqua/quisp: Open source implementation of quantum internet simulation package
https://github.com/sfc-aqua/quisp

Hensen B., Bernien H., Dréau A. E., Reiserer A., Kalb N., Blok M. S., Ruitenberg J., Vermeulen R. F. L., Schouten R. N., Abellán C., Amaya W., Pruneri V., Mitchell M. W., Markham M., Twitchen D. J., Elkouss D., Wehner S., Taminiau T. H., Hanson R.
Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km
https://arxiv.org/pdf/1508.05949

Kozlowski W., Dahlberg A., Wehner S.
Designing a quantum network protocol
https://arxiv.org/pdf/2010.02575.pdf

Kumar R., Mazzoncini F., Qin H., Alléaume R.
Experimental vulnerability analysis of QKD based on attack ratings
https://pubmed.ncbi.nlm.nih.gov/33953211/

Lago-Rivera D., Grandi S., Rakonjac J. V., Seri A., Riedmatten H. de
Telecom-heralded entanglement between multimode solid-state quantum memories
https://www.nature.com/articles/s41586-021-03481-8

Leprince-ringuet D.
Researchers create an ‚un-hackable‘ quantum network over hundreds of kilometers using optical fiber
https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/?ftag=TRE-03-10aaa6b&bhid=25995502010781669981775650631942&mid=13397161&cid=716464862&eh=444413324c291841edf4621b097040c32f18016fb0cfeaa19893b7840e891e72

Mao Y., Wang B.-X., Zhao C., Wang G., Wang R., Wang H., Zhou F., Nie J., Chen Q., Zhao Y., Zhang Q., Zhang J., Chen T.-Y., Pan J.-W.
Integrating quantum key distribution with classical communications in backbone fiber network
https://arxiv.org/pdf/1709.10046.pdf

Mehic M., Maurhart O., Rass S., Voznak M.
Implementation of quantum key distribution network simulation module in the network simulator NS-3
https://link.springer.com/article/10.1007/s11128-017-1702-z

Meter R., Touch J.
Designing quantum repeater networks
https://ieeexplore.ieee.org/document/6576340

Muralidharan S., Li L., Kim J., Lütkenhaus N., Lukin M. D., Jiang L.
Optimal architectures for long distance quantum communication
https://www.nature.com/articles/srep20463.pdf

Peev M., Pacher C., Alléaume R., et al.
The SECOQC quantum key distribution network in Vienna

https://iopscience.iop.org/article/10.1088/1367-2630/11/7/075001/pdf

Quantum Technology
CiViQ – Continuous Variable Quantum Communications –
https://qt.eu/about-quantum-flagship/projects/civiq/

Quantum Technology
QIA – Quantum Internet Alliance – European Quantum Internet Alliance
https://qt.eu/about-quantum-flagship/projects/european-quantum-internet-alliance/

Quantum Technology
QMiCS – Quantum Microwave Communcation and Sensing – Quantum Technology
https://qt.eu/about-quantum-flagship/projects/qmics/

QuNET
Die QuNET-Initiative – QuNET
https://www.qunet-initiative.de/

Ruihong Q., Ying M.
Research Progress Of Quantum Repeaters
https://iopscience.iop.org/article/10.1088/1742-6596/1237/5/052032

Valivarthi R., Davis S. I., Peña C., Xie S., Lauk N., Narváez L., Allmaras J. P., Beyer A. D., Gim Y., Hussein M., Iskander G., Kim H. Linus, Korzh B., Mueller A., Rominsky M., Shaw M., Tang D., Wollman E. E., Simon C., Spentzouris P., Oblak D., Sinclair N., Spiropulu M.
Teleportation Systems Toward a Quantum Internet
https://arxiv.org/abs/2007.11157

van Meter R., Ladd T. D., Munro W. J., Nemoto K.
System Design for a Long-Line Quantum Repeater
https://arxiv.org/pdf/0705.4128

Zhang Q., Xu F., Chen Y.-A., Peng C.-Z., Pan J.-W.
Large scale quantum key distribution: challenges and solutions
https://arxiv.org/pdf/1809.02291