Quantennetze – zwischen Realität und Zukunft
Quantennetze – zwischen Realität und Zukunft
Quantennetze – zwischen Realität und Zukunft in DFN-Mitteilungen 100 Seite 34
Reine Zukunftsmusik sind sie schon längst nicht mehr, aber meistenteils in experimentellem Zustand – die Quantennetze. Unser Autor Dr. Peter Kaufmann und unsere Autorin Dr. Susanne Naegele-Jackson begeben sich erneut in die Welt der Qubits und erklären, welche Strukturen, Netzkomponenten und Geräte notwendig sind und warum gerade Heterogenität im Bereich der Quantennetzarchitektur eine große Rolle spielt.
Peter Kaufmann, Susanne Naegele-Jackson. Quantennetze – zwischen Realität und Zukunft. In: DFN Mitteilungen Ausgabe 100, Dezember 2021
weitere Quellen
Physicists link quantum memories across the longest distance ever
https://www.livescience.com/quantum-memory-entangled-far.html
INQNET – press release
https://inqnet.caltech.edu/Press-PRXQ-dec142020.html
QuISP
https://aqua.sfc.wide.ad.jp/quisp_website/
CORDIS
https://cordis.europa.eu/project/id/951787/de
QKDNetSim – Quantum Key Distribution Network Simulation Module for NS-3
https://www.qkdnetsim.info/
QuNET-alpha — KIS Website
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/qunet-alpha
QuNET-beta — KIS Website
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/qunet-beta
WiN-Labor
https://www.win-labor.dfn.de/
Abobeih M. H., Cramer J., Bakker M. A., Kalb N., Markham M., Twitchen D. J., Taminiau T. H.
One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment
https://www.nature.com/articles/s41467-018-04916-z
Bhaskar M. K., Riedinger R., Machielse B., Levonian D. S., Nguyen C. T., Knall E. N., Park H., Englund D., Lončar M., Sukachev D. D., Lukin M. D.
Experimental demonstration of memory-enhanced quantum communication
https://www.nature.com/articles/s41586-020-2103-5
California Institute of Technology
Quantum Internet Tested at Caltech and Fermilab
https://www.caltech.edu/about/news/quantum-internet-tested-caltech-and-fermilab
Dahlberg A., Skrzypczyk M., Coopmans T., Wubben L., Rozpędek F., Pompili M., Stolk A., Pawełczak P., Knegjens R., Oliveira Filho J. de, Hanson R., Wehner S.
A link layer protocol for quantum networks
https://arxiv.org/pdf/1903.09778.pdf
GitHub
GitHub – sfc-aqua/quisp: Open source implementation of quantum internet simulation package
https://github.com/sfc-aqua/quisp
Hensen B., Bernien H., Dréau A. E., Reiserer A., Kalb N., Blok M. S., Ruitenberg J., Vermeulen R. F. L., Schouten R. N., Abellán C., Amaya W., Pruneri V., Mitchell M. W., Markham M., Twitchen D. J., Elkouss D., Wehner S., Taminiau T. H., Hanson R.
Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km
https://arxiv.org/pdf/1508.05949
Kozlowski W., Dahlberg A., Wehner S.
Designing a quantum network protocol
https://arxiv.org/pdf/2010.02575.pdf
Kumar R., Mazzoncini F., Qin H., Alléaume R.
Experimental vulnerability analysis of QKD based on attack ratings
https://pubmed.ncbi.nlm.nih.gov/33953211/
Lago-Rivera D., Grandi S., Rakonjac J. V., Seri A., Riedmatten H. de
Telecom-heralded entanglement between multimode solid-state quantum memories
https://www.nature.com/articles/s41586-021-03481-8
Leprince-ringuet D.
Researchers create an ‚un-hackable‘ quantum network over hundreds of kilometers using optical fiber
https://www.zdnet.com/article/researchers-created-an-un-hackable-quantum-network-over-hundreds-of-kilometers-using-optical-fiber/?ftag=TRE-03-10aaa6b&bhid=25995502010781669981775650631942&mid=13397161&cid=716464862&eh=444413324c291841edf4621b097040c32f18016fb0cfeaa19893b7840e891e72
Mao Y., Wang B.-X., Zhao C., Wang G., Wang R., Wang H., Zhou F., Nie J., Chen Q., Zhao Y., Zhang Q., Zhang J., Chen T.-Y., Pan J.-W.
Integrating quantum key distribution with classical communications in backbone fiber network
https://arxiv.org/pdf/1709.10046.pdf
Mehic M., Maurhart O., Rass S., Voznak M.
Implementation of quantum key distribution network simulation module in the network simulator NS-3
https://link.springer.com/article/10.1007/s11128-017-1702-z
Meter R., Touch J.
Designing quantum repeater networks
https://ieeexplore.ieee.org/document/6576340
Muralidharan S., Li L., Kim J., Lütkenhaus N., Lukin M. D., Jiang L.
Optimal architectures for long distance quantum communication
https://www.nature.com/articles/srep20463.pdf
Peev M., Pacher C., Alléaume R., et al.
The SECOQC quantum key distribution network in Vienna
https://iopscience.iop.org/article/10.1088/1367-2630/11/7/075001/pdf
Quantum Technology
CiViQ – Continuous Variable Quantum Communications –
https://qt.eu/about-quantum-flagship/projects/civiq/
Quantum Technology
QIA – Quantum Internet Alliance – European Quantum Internet Alliance
https://qt.eu/about-quantum-flagship/projects/european-quantum-internet-alliance/
Quantum Technology
QMiCS – Quantum Microwave Communcation and Sensing – Quantum Technology
https://qt.eu/about-quantum-flagship/projects/qmics/
QuNET
Die QuNET-Initiative – QuNET
https://www.qunet-initiative.de/
Ruihong Q., Ying M.
Research Progress Of Quantum Repeaters
https://iopscience.iop.org/article/10.1088/1742-6596/1237/5/052032
Valivarthi R., Davis S. I., Peña C., Xie S., Lauk N., Narváez L., Allmaras J. P., Beyer A. D., Gim Y., Hussein M., Iskander G., Kim H. Linus, Korzh B., Mueller A., Rominsky M., Shaw M., Tang D., Wollman E. E., Simon C., Spentzouris P., Oblak D., Sinclair N., Spiropulu M.
Teleportation Systems Toward a Quantum Internet
https://arxiv.org/abs/2007.11157
van Meter R., Ladd T. D., Munro W. J., Nemoto K.
System Design for a Long-Line Quantum Repeater
https://arxiv.org/pdf/0705.4128
Zhang Q., Xu F., Chen Y.-A., Peng C.-Z., Pan J.-W.
Large scale quantum key distribution: challenges and solutions
https://arxiv.org/pdf/1809.02291