

Quantum Simulators
Test and overview of the most promising simulators

Test report of the DFN WiN-Lab in Erlangen, as of 15.07.2022

Content

QISKIT ... 2

QUANTUM NETWORK EXPLORER .. 8

SIMULAQRON ... 11

NETSQUID .. 15

QUNETSIM .. 18

SILQ .. 22

GOOGLE QUANTUM AI (CIRQ) ... 25

SQUANCH ... 27

SEQUENCE .. 30

QKDNETSIM .. 33

QKDSIMULATOR .. 35

AMAZON (BRAKET) ... 39

QUANTUM PROGRAMMING STUDIO .. 41

MICROSOFT AZURE QUANTUM/QKD/Q# ... 45

Foreword

This report presents various simulators that have been examined in more detail in individual tests.

These are platforms, software development kits (SDKs), standalone simulators and simulation

engines. For all simulators examined, their properties are described and it is explained for which

application they are most suitable. In addition, there is an application example that has been tested

in a concrete installation; the fastest or most practical installation method is also explained. Each

test report is concluded with a conclusion.

Qiskit

Qiskit

Repository https://github.com/Qiskit/qiskit

Language Python

OS Cross-platform

Type Software Development Kit (SDK)

Focus Pulse / Circuits

Feature Web platform/IDE available1

License Apache License 2.0

Website https://qiskit.org

Registration no

Qiskit is an SDK in Python provided by IBM for creating and executing algorithms and circuits and for

generally working with noisy quantum computers. Qiskit can be installed completely independently on any

popular operating system and can run simulations independently. It consists of several components,

although only two main ones will be discussed here.

Qiskit Terra is the basic component on which all the others are built. Terra provides the ability to assemble

quantum programs at the circuit and pulse level , and manages the execution of batches of experiments

on remote devices and backend communication.

Qiskit Aer offers various simulators for quantum computers with realistic noise models hosted locally on

the user's device or HPC resources available via the cloud. IBM itself calls its simulator services "advanced

cloud-based classical emulators of quantum systems". At this point, it should already be mentioned that

Qiskit is closely linked to IBM's "quantum cloud" and that a simulation can be run locally on the notebook

as well as on "classic" hardware in the IBM cloud. The highlight here, however, is that2 real quantum

hardware is also available free of charge to a limited extent and you can compare simulation and real

process.

Interface(s) – It should also be emphasized that you also have the choice of using a local user interface or

using IBM's Web Interface both of which Jupyter Notbooks support. Advantage of the Web Composer

(Figure 1) is the drag & drop editor, which transfers the designed circuit directly to Python and displays

result forecasts in real time.

Backends represent either a simulator or a real quantum computer and are responsible for executing

quantum circuits and returning results. As with some other software simulators3 they can be exchanged.

Table 1 shows the backend simulators provided by IBM. The state vector is the default simulator here.

1 Not mandatory
2 Latency; not all processors and locations are free
3 A software simulator is the term used to describe the entire framework/SDK, which operates an interchangeable simulator in the sense of a
simulation core as a backend

https://github.com/Qiskit/qiskit
https://qiskit.org/
https://quantum-computing.ibm.com/
https://jupyter.org/

Qiskit

Figure 1: IBM's Web Composer

Table 1: Available Backend Simulators

Statevector
Type: Schrödinger
wavefunction
QuBits: 32Noise
modeling: Yes

Stabilizer
Type: Clifford
QuBits: 5000
Noise modeling:
Yes (Clifford only)

Extended
stabilizer
Type: Extended
Clifford (e.g.,
Clifford+T)
QuBits: 63 Noise
modeling: No

MPS
Type: Matrix
Product State
QuBits: 100 Noise
modeling: No

QASM
Type: General,
context-aware
QuBits: 32 Noise
modeling: Yes

Community – A major advantage of the framework is its large community and the associated variety of

media. There are already a variety of media and opportunities for interested parties to deal with the world

of quantum computing. The Qiskit Foundation itself maintains a YouTube channel with many tutorials,

talks and background information on the topic and regularly organizes quantum challenges, camps,

hackathons and seminars and meetups. IBM also maintains its own workspace in Slack, which you can join.

Installation – If you are afraid of an installation at first, you can start directly in IBM's Quantum4 Lab. If you

prefer to work locally, you can use pip install qiskit to initiate the installation. The manufacturer

recommends a virtual environment with Anaconda. Since we only want to demonstrate a small circuit

here, we make do with the pre-installed Python distribution and create a virtual environment with

python3 -m venv qiskit-env/5 and install matplotlib in addition to qiskit to be able

to visualize the results.

Simulation on classic hardware – We now create a relatively simple circuit with 3 qubits, which we put into

superposition using a Hadamard gate and measure directly afterwards. We start Python and import the

entire library for simplicity from qiskit import *. Then we create a circuit with 3 qubits and 3

classical bits each to store the result there qc = QuantumCircuit(3,3). The QuBits are initially in

4 Registration required
5 Activation with source qiskit-env/bin/activate

https://www.youtube.com/c/qiskit
https://qiskit.slack.com/
https://lab.quantum-computing.ibm.com/
https://www.anaconda.com/products/distribution

Qiskit

the state |0⟩, which is why a measurement would also result in 0. We therefore loop through all QuBits and

add the H-gate and a measurement in each case. Since all QuBits are now in the state, we can now expect

a random value of 0 or 1 through measurement. With |+⟩6qc.draw() the generated circuit can be

drawn, see Figure 2. After selecting the backend (Table 1) the "job" is executed. Finally, the results are

plotted in a histogram.

Figure 2: Example of a simple circuit

from qiskit import * 1

from qiskit.tools.visualization import plot_histogram 2

qc = QuantumCircuit(3,3) 3

for j in range(3): 4

 qc.h(j) #Hadamard Gate 5

 qc.measure(j,j) #Messung 6

qc.draw() #Zeichnen the Figure 2 7

backend = Aer.get_backend('qasm_simulator') #Wahl of the backend job = 8

execute(qc, backend) 9

 #Ausführenplot_histogram(job.result().get_counts()) #Plotten of 10

the histogram 11

Figure 3: Result histogram of the example circuit

The histogram from our example is intended to show that by applying a Hadamard gate, a superposition

state is created, in which the QuBit decays into the state 0 or 1 with a probability of 50% after the

6 Superposition

Qiskit

measurement. Since we have applied this gate equally to all qubits, we have a stochastically balanced

histogram in which the probability of the occurrence of all permutations is the same.

True Quantum Hardware – IBM not only provides different simulator types, a circuit composer, and a lab

for interested users7 but also real quantum hardware. This is offered as part of IBM Quantum Services and

is referred to as the "System". Some of these systems are reserved for so-called "Premium Plan Clients",

but there are currently 7 systems that are accessible to the public via a standard registration with IBM

Quantum. There are different processor architectures, revisions, and design variants. Some of these are

also subsections of a larger chip. An overview of current architectures and their specialties is available in

Figure 5 . In addition to the systems, programs are also offered that are intended to speed up the

execution of circuits.

QV and CLOPS – In addition to the number of qubits, other attributes that describe the performance,

quality, or scalability of a system are also important. IBM primarily specifies QV and CLOPS among its

available quantum processors, which are supposed to play a role in the execution of programs and circuits.

QV or "Quantum Volume". Is a value that reflects the performance of gate-based quantum computers,

regardless of the underlying technology.CLOPS or "Circuit Layer Operations Per Second", is a value that

indicates how many layers of a QV circuit a QPU (Quantum Processing Unit) can execute per unit of time.

Figure 4: Example of another simple circuit

Running on real quantum hardware – As we've already seen, simple circuits with a small number of qubits

can be simulated well on classical hardware. However, a simulator is an ideal quantum device that does

not know true quantum noise due to decoherence8, faulty gates or measurements.

7 IBM's name for their Web IDE
8 Phenomenon of quantum physics, arising from unwanted interaction with environment

Qiskit

Figure 5: Different processor architectures

Figure 6: Completed job; Result

Qiskit

Figure 7: Selection of the system

Conclusion – Qiskit is a powerful quantum simulation software designed for pulses and circuits, with

continuous development and a strong community. But network-related concepts can also be implemented

on a physical level with Qiskit. Fault models are part of the software and can be validated through access

to real hardware. Qiskit is very beginner-friendly among quantum simulators with a full-fledged ecosystem,

not least because of the included "textbook", which explains the basics as well as provides useful

examples.

Quantum Network Explorer

Quantum Network Explorer

Repository https://github.com/QuTech-Delft/qne-adk

Language Drag & Drop

OS Web browser

Type Web Application

Focus Network & Distributed Applications

Feature Application Development Kit for Quantum Network
Explorer (QNE-ADK)

License MIT License (QNE-ADK)

Website https://quantum-network.com

Registration No

The Quantum Network Explorer, as the name suggests, is a solution

provided by QuTech. Web Application with a focus on a visually clear

simulation of distributed applications and Network Protocols. No

registration is necessary and the simulation can be used

independently of the operating system via the web browser. An

extremely interesting point, especially for network operators, is the

easy configurability of the so-called "Fidelity9" for junctions and

routes, see also Figure 10.

Experiments are instances of an

application that are started

automatically as soon as you run

them. If you still want to register,

it allows you to save your

"experiments" and continue at a

later time.

Ready to Use – Inexperienced users or users without Python programming knowledge can already use the

three applications "Distributed CNOT, State Teleportation and QKD“ (Illustration 8) trywithout having to

write a single line of code. These examples are provided with detailed descriptions of the protocols and

pictures and are intended to enable a quick start. The also existing Quickstart Guide describes the first

steps and gives the user three different tasks to introduce him to the application.

Illustration 8: Pre-built Applications in QNE (https://www.quantum-network.com/)

QNE-ADK is the application development kit for Quantum Network Explorer and is aimed at advanced

users who want to write their own applications. QNE-ADK provides a CLI with commands to create the

necessary files 10that define applications and experiments. When the experiment is configured, it can be

run on the local11 simulator.

9 Fidelity is a measure of the quality of quantum information processing
10 Guidelines must be followed for development.
11 At the moment, QNE-ADK is only available locally

https://github.com/QuTech-Delft/qne-adk
https://quantum-network.com/
https://www.quantum-network.com/
https://www.quantum-network.com/applications/
https://www.quantum-network.com/qne-quick-start/
https://www.quantum-network.com/adk/

Quantum Network Explorer

Web-only application – Examples are already available, so there is no need to install or program your own

circuits. The tool is initially purely web-based and has a clear visualization, which can significantly increase

learning success. Therefore, this application is suitable for both the new and inexperienced user, as well as

the budding expert who would like to install the associated Application Development Kit for Quantum

Network Explorer (QNE-ADK). This includes everything to build your own quantum network application.

Application example CNOT –That CNOT Gate is an

exclusive quantum gate that has two inputs and two

outputs. The Control-QuBit x (Figure 9) indicates

whether QuBit y is flipped. Like all quantum

operations, the CNOT-Gate is reversible. This means

that the operation can be completely reversed. This

behavior (entanglement) makes the gate extremely

interesting for distributed applications, as the two

entangled particles can be distributed before the

measurement and information is transmitted

instantaneously through the "nothing" through the

measurement.

Figure 9: The CNOT gate

Figure 10: Configurable Fidelity for Nodes and Connections

In the following, we want to run through such an algorithm using an example in which we transfer a QuBit

from a site A (controller) to a site B (target) and then observe how a measurement of another Qubit at site

A determines the status of this qubit at site B without further communication.

https://www.win-labor.dfn.de/quantentechnologien/grundlagen/#CNOT

Quantum Network Explorer

Figure 11: State of the Control and Target QuBits before and after transmission

Example Distributed CNOT – The first thing to do after starting the "Distributed CNOT" application is to

select one of three possible networks. You can choose between "Randstad", "The Netherlands" and

"Europe". As you might expect, these differ significantly in size and the distances to be covered. We choose

Europe and now have the locations: Paris, Delft, Innsbruck, Copenhagen and Barcelona available to

assign the roles "Controller" and "Target" to them, as already indicated in the CNOT section. We decide on

Copenhagen as controller and Innsbruck as target, as a large part of the route runs through

Germany.

Next, both endpoints are configured with a gate fidelity of 0.995, for example, and the

intermediate channel with a relatively low link fidelity of 0.750. After that, we put the input state

of the controller on |1⟩, so that the target QuBit flips with the input state.|0⟩

Visualization – Now, when we start the simulation, we see how an entangled QuBit pair is first created

between the controller and the target. Interestingly, this is not done via the route with the lowest hops,

but via an alternative route with higher fidelity. This is followed by preparations of the qubits on both

sides, as well as applications of gates and measurements, followed by the transmission of results via a

classic channel.

Conclusion – If you have not yet dealt with the topic of quantum algorithms relatively little, but still want to

deal with distributed applications and networks without familiarizing yourself with the mathematics

behind them, the Quantum Network Explorer could be a good choice. This stands out mainly with its

successful visualizations and can be easily configured via the web without having to install anything.

SimulaQron

SimulaQron

Repository https://github.com/SoftwareQuTech/SimulaQron

Language Python

OS Linux and macOS

Type From application to network stack

Focus Distributed application across multiple quantum processors and channels

Feature Exploring the implementation of a network stack

License Redistribution and use in source and binary forms, with orwithout modification, are
permitted provided that thefollowing conditions are met: see link

Website http://www.simulaqron.org/

Registration -

Properties:

SimulaQron is a simulator designed for the development of platform-independent applications (mainly for

the application layer) as well as for network protocols. However, it is not suitable for testing or simulating

quantum repeaters, code, error correction and QuBit noise12. The simulator can be run on one or more

classical computers to simulate a network of distributed quantum processors. Libraries in Rust, Python and

C are provided for the development of programs. To simulate the quantum processors (backend), which

are connected to each other via a simulated communication network, SimulaQron uses the QuTip

simulator. Using ProjectQ12 is also possible. In principle, any simulator for a quantum processor that has a

Python interface can be used as a backend. In addition, the simulator can be combined with NetSquid: An

application written in SimulaQron can be run via the CQC (Classic Quantum Combiner) module in a

Netsquid simulated network. This allows the influence of time, e.g. in the form of delays, to be taken into

account in an event-driven manner.

Installation

SimulaQron can be easily installed using pip:

pip3 install simulaqron

To get the program up and running, the following entry must be changed after installation in file

simulaqron.py in line 234 in the simulaqron folder (as of 04.07.2022):

@click.argument('value', type=click. Choice([b.value for b in

SimBackend.value]))

To

@click.argument('value', type=click. Choice([b.value for b in

SimBackend]))

12 Axel Dahlberg and Stephanie Wehner, "SimulaQron – A simulator for developing quantum internet software", 2019 Quantum Sci. Technol. 4
015001

SimulaQron

https://github.com/SoftwareQuTech/SimulaQron
https://github.com/SoftwareQuTech/SimulaQron/blob/master/LICENSE
http://www.simulaqron.org/

SimulaQron

SimulaQron was tested with the OS Ubuntu 20.04.

Building SimulaQron Node – The structure of a network node is Illustration 12 depicted:

Illustration 12: Schematic Structure of a Network Node in SimulaQron12

The lowest level is the quantum hardware or processor, which can generate and measure qubits. It also

has optical connections to other nodes. The processor has a platform-dependent controller that has,

among other things, classic connections to other nodes.

The CQC (Classic Quantum Combiner) interface is provided by the platform-dependent part and contains

commands e.g. for performing measurements and instructions specifically for quantum networks such as

generating entanglement and transmitting QuBits.

Programming Modes – There are two different ways to access quantum hardware:

Illustration 13: Possibilities of programming SimulaQron12

1. Native Mode: In this mode, the hardware is accessed directly from the library Twisted in Python.

This mode grants full access to the quantum hardware, but this mode is specifically designed for

Twisted and will therefore hardly be used in future quantum networks12.

2. CQC Mode: CQC is a packet format that is used to send instructions to the network node or

quantum hardware. To simplify programming via CQC, a C and Python library is provided. In the

meantime, a RUST library is also available.

CQC format – The CQC instruction set includes a number of different commands to control the quantum

processor. The following comparison shows the command to create a QuBbit in Python and the

corresponding CQC command:

Python Command CQC Command
Creating QuBit on node1

q=qubit(node1)

Request to allocate a QuBit

CMD_NEW

https://docs.rs/cqc

SimulaQron

CQC can also be installed as a standalone Python module:

pip3 install cqc

Example

Bell Pair Generation – A Bell Pair generation between two hosts (Alice, Bob) can be created as follows,

using Python and CQC interface:

1. Start SimulaQron via the following command line command:
simulaqron start

This command starts five hosts, two of which are named Alice and Bob respectively

2. Then use the cd command to navigate to the following folder (folder with examples must be

copied from the GitHub repository
):SimulaQron/examples/nativeMode/corrRNG/

3. After that, the following changes must be made in the bobTest.py and aliceTest.py files

(as of 04.07.2022):

4. Replace hostConfig with host_config

5. Replace socketsConfig with SocketsConfig

6. Then start the program with ./run.sh (file is in the examples folder).

Output of the program

App Alice: Measurement outcome is: 0/1

App Bob: Measurement outcome is: 0/1

As can be expected after measuring the Bell state, the value for Alice and Bob is either 0 or 1.

Source code aliceTest.py:

Initialize the connection

with CQCConnection("Alice") as Alice:

 # Create an EPR pair

 q = Alice.createEPR("Bob")

 # Measure qubit

 m=q.measure()

 to_print="App {}: Measurement outcome is:

{}".format(Alice.name,m)

 print("|" +"-"*(len(to_print)+2)+"|")

 print("| " +to_print+" |")

 print("|" +"-"*(len(to_print)+2)+"|")

The command CQCConnection("Alice") creates a host or node with the name Alice and at the

same time establishes a CQC connection to it. The Alice.createEPR("Bob") command creates a

pair of bells between the two hosts, Alice and Bob.

Result

SimulaQron enables platform-independent development of applications using CQC technology. Simulators

for quantum processors (backend) are freely selectable as long as they have a Python interface. The

simulator is designed for the development of applications for the application layer. For installation or

Launch of the Bell pair example, it was necessary to modify the code (as of 04.07.2022). Presumably, the

https://github.com/SoftwareQuTech/SimulaQron/tree/master/examples/nativeMode
https://github.com/SoftwareQuTech/SimulaQron/tree/master/examples/nativeMode

SimulaQron

code or documentation has not yet been adapted accordingly. Without these adjustments, the evaluation

of SimulaQron would not have been possible.

NetSquid

NetSquid

Repository None available

Language Python

OS Platform-independent: Python interpreter required

Type Performance study of the physical layer

Focus Simulation of a quantum-based internet

Feature Modular design; Quantum Computing Library

License Free, but registration required

Website https://netsquid.org/

Registration Necessary, free of charge

Properties

NetSquid (NETwork Simulator for Quantum Information) is an event-oriented simulator suitable for

simulating events in quantum networks and quantum computing systems from the physical to the

application layer13.

Installation

After the required registration, the NetSquid Python library can be downloaded by entering your

username and password with the following command:

pip3 install --extra-index-url https://pypi.netsquid.org netsquid

Example

To illustrate the event-oriented nature of Netsquid, two hosts are supposed to send each other a QuBit,

measure it and send it back again. For this purpose, Netsquid has a so-called. discrete event simulation

engine, which arranges events, e.g. the receipt of a qubit, on a timeline and then processes them

chronologically:

Illustration 14: Schematic representation of the program14

13 https://www.nature.com/articles/s42005-021-00647-8

https://netsquid.org/
https://forum.netsquid.org/ucp.php?mode=register

NetSquid

Figure 15: Schematic representation and chronological sequence of an event-oriented simulation14

Network Components – To build the network, the following components are required:

• Two hosts or nodes, which serve as sender and receiver respectively

• Two one-way quantum channels for transmitting the QuBits

Illustration 16: Schematic representation of network topology14

The letters Z (Node Ping) and X (Node Pong) indicate the base in which the QuBits are measured. The

following are the most important functions and start of the simulation with comments:

Create #Netzwerkknoten named Ping and Pong

node_ping = Node(name="Ping")

node_pong = Node(name="Pong")

Create a class with a delay model for the quantum channels

class PingPongDelayModel(DelayModel)

Connect both nodes with the quantum channels

connection = DirectConnection(name="conn[ping|pong]",

channel_AtoB=channel_1,channel_BtoA

=channel_2)

Define protocol for sending, receiving, and measuring the QuBits

14 https://docs.netsquid.org/latest-release/quick_start.html

NetSquid

class PingPongProtocol(NodeProtocol)

Assign log to the nodes and specify in which base to measure:

ping_protocol = PingPongProtocol(node_ping, observable=ns. Z,

qubit=qubits[0])

pong_protocol = PingPongProtocol(node_pong, observable=ns. X)

Start logs in both nodes and set the runtime of the simulation in

ns:

ping_protocol.start()

pong_protocol.start()

run_stats = ns.sim_run(duration=300)

Output of the simulation:

17.4: Pong measured |+> with probability 0.50

33.8: Ping measured |1> with probability 0.50

51.3: Pong measured |-> with probability 0.50

69.7: Ping measured |0> with probability 0.50

87.8: Pong measured |-> with probability 0.50

The first entry indicates the time that has elapsed between two events. These times result from randomly

generated delays (PingPongDelayModel) in the quantum channels. If a QuBit reaches the ping or pong

node, the result of the measurement and its probability are displayed. Due to the different bases (Z-base

→ ping, X-base → pong) in which measurements are taken, the result of the measurement is random each

time (probability 50%, measured states: |0> or |1>: ping; |+> or |-> pong).

Result

NetSquid is suitable for simulating event-oriented processes and procedures in quantum networks.

Compared to SeQUeNCE - which is also a discrete event simulator - NetSquid can simulate processes from

the physical to the application layer. SeQUeNCe, on the other hand, is designed to simulate events in the

lower two network layers, but is more detailed than NetSquid. Compared to SimulaQron and QuNetSim, on

the other hand, NetSquid is more complex to create applications at the application layer.

QuNetSim

QuNetSim

Repository https://github.com/tqsd/QuNetSim

Language Python

OS Cross-platform

Type framework for quantum networking simulations

Focus Network

Feature Optional own backend

License MIT License

Website https://tqsd.github.io/QuNetSim/

Registration no

QuNetSim is a package written in Python that is

freely available and is suitable for testing

protocols quickly and easily. It is mainly aimed at

students and teachers who are looking for a

suitable demonstrator to learn and explain "high-

level" protocols. The software simulates the

network layer in a quantum network without the

user having to worry about routing between two

hosts that are (in)directly connected by the

network topology. In addition, the simulator has

mechanisms to control synchronization in the

network. In QuNetSim, you can also run a

classical and a quantum network in parallel in a

simulation, as is necessary for some algorithms.

The different backends – The modular backend is

worth mentioning, which works with SimulaQron

by default , but can also be exchanged with other

backends such as ProjectQ and EQSN. If you

prefer your own backend, you can integrate your

own library.

The installation with pip – QuNetSim can15 be

installed manually on Windows and Linux via

source code, but it is advisable to perform the

installation in a virtual environment in Python. A

description of how to create a virtual

environment can be found in the section on

installing Qiskit. We do the installation with pip

install qunetsim .

Templates are scripts that map or instantiate a network. To test these networks,

all you have to do is run the corresponding template. If you want to create new

templates, this is achieved via template . This takes the user through a wizzard,

which asks what the new template should be called, how many nodes should be

created, which backend should be used, and what topology the hosts should form.

Among them: mesh, ring, star, linear and tree.

Hello World – After the installation is complete, we run the template script . We

now find a new .py script in the current path, which can be executed. This

already includes a kind of "Hello World" program, which in our case sends 5

quBits in the state ∣1⟩ from host A to host B and is measured there.

The QuBit object in QuNetSim is mainly a wrapper for the QuBit

located in the backend. The class is located in qunetsim.objects.qubit

and is imported accordingly. With q = Qubit(host, qubit=None,

q_id=None, blocked=False) a QuBit can be instantiated and assigned to a

host. With the QuBit, some operations can now be performed. Among them, for

example:

H() Hadamard fidelity(other_qubit) Return of Fidelity

X(),Y(),Z() Pauli measure() Measure

cnot(target) CNOT send_to(receiver_id) Send to Host

15 Cloning the repository and installing the requirements with pip

https://github.com/tqsd/QuNetSim
https://tqsd.github.io/QuNetSim/
https://tqsd.github.io/QuNetSim/
http://www.simulaqron.org/
http://www.simulaqron.org/
https://projectq.ch/
https://github.com/tqsd/EQSN_python

QuNetSim

density_operator() Return of sealing matrix

The host is analogous to a host or a node in a classic network. It can route

packets, act as a relay, or follow special protocols. The class is located in

qunetsim.components.host and a new host is created with e.g.

host_alice = Host('Alice'). Hosts are also connected to other hosts

through Connections. To do this, host_alice.add_connection('Bob')

and host_bob.add_connection('Alice') are executed, which

establishes two bi-directional connections, a classical connection and a quantum

channel.

The network is a central component in any simulation. The networks must be

linked to hosts that have already defined their connections. Based on the

topology, different routing algorithms can now be set up for the classical and

quantum channels. The shortest route is used as default.

Example – The code excerpt

below is one example among many that can be

found here on the documentation website. Since

this is an example that mainly covers the basics,

we will discuss the code excerpt in its entirety

here. Some things have already been described in

the previous sections.

The following example (Figure 17) is a network in

which each participant is part of a linear network.

Alice is connected to Bob, Bob to Eve, etc.; now

Alice wants to transfer 10 QuBits to Dean and

waits for a confirmation from Dean after each

transmission to make sure that the QuBit has also

arrived at Dean.

Figure 17: Example network QuNetSim

We start in lines 1-3 with the import of the

required packages Host, Network and Qubit.

In the main() function, a network is first

instantiated (line 5), then a string array with the

four participants is created (line 6) and finally

started with the network.start(nodes)

method

and with a delay of 0.1 (line 8). In the

following (lines 9-22), the hosts are created,

linked to each other and started. To complete the

network configuration, the hosts are added to the

network using the network.add_host()

method.

from qunetsim.components import Host 1

from qunetsim.components import Network 2

from qunetsim.objects import Qubit 3

def main(): 4

 network = Network.get_instance() 5

 nodes = ["Alice", "Bob", "Eve", "Dean"] 6

 network.start(nodes) 7

 network.delay = 0.1 8

https://tqsd.github.io/QuNetSim/examples/send_data.html

QuNetSim

 host_alice = Host('Alice') 9

 host_alice.add_connection('Bob') 10

 host_alice.start() 11

 host_bob = Host('Bob') 12

 host_bob.add_connection('Alice') 13

 host_bob.add_connection('Eve') 14

 host_bob.start() 15

 host_eve = Host('Eve') 16

 host_eve.add_connection('Bob') 17

 host_eve.add_connection('Dean') 18

 host_eve.start() 19

 host_dean = Host('Dean') 20

 host_dean.add_connection('Eve') 21

 host_dean.start() 22

 network.add_host(host_alice) 23

 network.add_host(host_bob) 24

 network.add_host(host_eve) 25

 network.add_host(host_dean) 26

 for _ in range(10): # Create a qubit owned by Alice 27

 q = Qubit(host_alice) 28

 # Put the qubit in the excited state 29

 q.X() 30

 # Send the qubit and await an ACK from Dean 31

 q_id, _ = host_alice.send_qubit('Dean', q, await_ack=True) 32

 # Get the qubit on Dean's side from Alice 33

 q_rec = host_dean.get_data_qubit('Alice', q_id) 34

 # Ensure the qubit arrived and then measure and print the 35

results. 36

 if q_rec is not None: 37

 m = q_rec.measure() 38

 print("Results of the measurements for q_id are ", str(m)) 39

 else: 40

 print('q_rec is none') 41

 # Stop the network at the end of the example 42

 network.stop(stop_hosts=True) 43

if __name__ == '__main__': 44

 main() 45

In line 28, Host Alice will create a qubit and

convert it to the excited state ∣1⟩ with

the X gate (line 30). Now everything is already

done to transfer the QuBit to Dean with
host_alice.send_qubit('Dean', q,

await_ack=True) from line 32. Alice will

then wait for confirmation from Dean before

continuing. Since the flag await_ack is set

to true, send_qubit() returns two values:

the qubit ID that was sent, and a boolean value

that indicates whether the ACK has arrived or

Alice has exceeded the maximum wait time.

Dean reads the QuBit in line 34 and then takes a

measurement (line 37) if the transfer was

successful and outputs a string. This procedure is

QuNetSim

executed a total of 10 times (for 10 qubits) before

the network is stopped.

Explanation: In addition to

the Pauli-Y and Pauli-Z gates,

the Pauli-X gate is a 1-QuBit

gate that inverts the input

QuBit, i.e. from a state ∣0⟩

creates a state ∣1⟩ and vice
versa. If we look at this

behavior on the so-called

Bloch sphere, which is the

standard for representing 1-qubit states, we will

find that this change of state corresponds to a

180° rotation of the vector around the x-axis, see

Figure 18. This behavior corresponds to the

behavior of the classic NOT gate. The other two

gates work in the same way, only around the

corresponding axis.

Conclusion – QuNetSim is a simulator based on Python and thus written in a common

programming language suitable for beginners. It is very suitable for students and teachers, as well as users

who need a demonstrator or are looking for a suitable introduction to the topic of quantum technology. In

addition, this framework is aimed at interested parties who are already looking for an entry into networks

and expect that a network system has already been implemented. The documentation provided is detailed

and easy to understand and contains many examples.

Figure 18: How a Pauli-X
gate works

SILQ

SILQ

Repository https://github.com/eth-sri/silq

Language Q#, D, Tex, Python

OS VS Code is required to install the Silq plug-in

Type Quantum circuits

Focus More intuitive semantics

Feature Uncomputation/Reset of QuBits to the Initial State

License FreeBSD License

Website https://silq.ethz.ch/

Registration No restrictions: download and install
without registration

Properties

Silq is a simulator that takes into account the so-called uncomputing of QuBits in simulations16: This

enables the automatic reset of temporarily required QuBits - so-called Ancilla QuBits - which are then

available for further operations. The simulator uses a syntax that is specially designed for programming

with QuBits and has its own variable types for "classical" states and those states that are used to store

quantum states (superposition). Silq is based on the perspective of application developers and not on

creating algorithms for a specific type of quantum processor. Matrix operations and tensor products are

not required for this: Instead, Silq uses suitable variable types and permissible operators, which

significantly shortens the scope of code for creating algorithms (e.g. groover algorithm). Other simulators

such as Cirq, Qiskit etc... are mostly based on Python or Matlab and are designed more for use on "classic

computers". Silq, on the other hand, is specifically designed for the abstraction of low-level qubit

operations.

Installation

The easiest way to install Silq is to add Silq as a plugin in VS Code (Visual Studio Code). For the following

use case, the Silq plugin has been installed in VS Code on Windows 10.

Example

As a simple example, a Bell pair – including measurement – is created in Silq:

1 def main(){2 x0:=0:B; 3 x0:=H(x0); 4 x1:= if x0 then 1:B else

0:B;

5 return measure (x0,x1);}

The function returns output with a probability of 50% either (0,0) or (1,1). The formula for the Bell pair is:

Ψ =
1

√2
(|00⟩ + |11⟩)

In contrast, languages such as Qiskit are based on the concept of quantum gates or status vectors for

building a circuit for quantum entanglement:

qc = QuantumCircuit(2)

Apply H-gate to the first:

16 Silq: A High-Level Quantum Language with Safe Uncomputation and Intuitive Semantics: https://files.sri.inf.ethz.ch/website/papers/pldi20-
silq.pdf

https://github.com/eth-sri/silq
https://silq.ethz.ch/

SILQ

qc.h(0)

Apply a CNOT:

qc.cx(0,1)

qobj = assemble(qc)result =

svsim.run(qobj).result()plot_histogram(result.get_counts()

As can be seen from the comparison of the two source codes, Qiskit requires an H and CNOT gate, while

Silq only needs an H gate and performs CNOT with an if-else statement (lines of code marked CNOT in

blue).

Uncomputation – Silq distinguishes between consumed and unconsumed variables, thus implementing the

concept of uncomputation. To explain this concept, three variables are connected by an AND link:

𝑥&&𝑦&&𝑧

On a classical computer, the results of such an operation are stored in temporary variables, e.g. the result

of x&&y.

Figure 19: QuBit gate uncomputation

First, the result of the operation x&&y is stored in the variable a. After that, the result of a&&z is stored in

r. r and a are in the initial state 0. If the fourth QuBit is to be used for further operations, it must return to

state 0. This is done by so-called toffoli gates (orange circles in Figure 19). Such gates invert a QuBit if both

inputs have state 1. This sets the state of QuBit a back to 0 by the third gate, because both inputs (x&&y)

are true (=1). In the case of quantum computing, the uncomputation of variables is very important, as

there are only limited qubits available.

Consumable and non-consumable parameters – Silq implements uncomputing in the form of consumable

and non-consumable parameters. Consumed parameters are those that are utilized by a function, e.g.

through a measurement. The quantum mechanical state after a function thus no longer depends on this

variable, but the result of the function does.

SILQ

Figure 20: Error with unconsumed variable

Figure 20 shows the error output if a variable is not consumed by the function. In the example, the

return statement with the measurement of the variable (cf. Code for the creation of the Bell state in

Silq).

To define parameters that are not consumed by a function, the following annotations are available in Silq:

const, lifted and qfree. Example: Function parameters or expressions annotated in this way do not

change or destroy superpositions, i.e. qfree variables are automatically uncomputed after use and are

available for further use:

def qfree_example(f:B→qfree B)qfree{

 return f(true); qfree Result

}

Non-consumed variables cannot store superpositions, only stable states such as |0> or |1>.

Result

With its unique syntax, Silq makes it possible to simulate processes such as entanglement and

teleportation largely without status vectors and matrices. The simulator is platform-independent, i.e. not

designed for a specific quantum processor or computer. Quantum algorithms such as the Groover

algorithm can be implemented in Silq with significantly fewer lines of code than, for example, in Qiskit

(cf.1718,).

The syntax used makes it possible to perform many operations with only a few lines of code, but this

increases complexity. Simulations based on gates and matrices, on the other hand, are easier to

understand than Silq simulations.

17 Groover algorithm in Silq: https://silq.ethz.ch/overview
18 Groover algorithm in Qiskit: https://qiskit.org/textbook/ch-algorithms/grover.html

Google Quantum AI (Cirq)

Google Quantum AI (Cirq)

Repository https://github.com/quantumlib/cirq

Language Python

OS Platform-independent: requires Python

Type Quantum circuits

Focus Testing algorithms (on a quantum basis)

Feature Ecosystem

License Apache License 2.0

Website https://quantumai.google/cirq

Registration Unnecessary

Description

Cirq is a Python software library for writing, manipulating, and optimizing quantum circuits, which can then

be run on quantum computers and quantum simulators. Cirq provides useful abstractions for dealing with

today's noisy quantum computers.

Installation

For installation on Windows, Linux or Mac OS X, Python version ≥ 3.7.0 is required, as well as the latest

version of the package manager pip.

python -m pip install --upgrade pip

python -m pip install cirq

To test whether the installation was successful, the following command is suitable:

python -c 'import cirq_google; print(cirq_google. Sycamore)'

Figure 21: Sycamore processor with 54 qubits from 2019.

https://github.com/quantumlib/cirq
https://quantumai.google/cirq

Google Quantum AI (Cirq)

Registration

No registration is required to use the framework. However, if you shy away from a local installation, you

can also use Google's service called Colab, but this requires a login to a Google account. This service is

basically a Jupyter Notebook clone embedded in Google Drive. Colab is compatible with Jupyter and also

allows you to open and export .ipynb files.

Example

try: import cirqexcept ImportError: print("installing cirq...")

!pip install --quiet cirq import cirq print("installed cirq.")

Pick a qubit.qubit = cirq. GridQubit(0, 0)

Create a circuitcircuit = cirq. Circuit(cirq. X(qubit)**0.5, #

Square root of NOT. cirq.measure(qubit, key='m') # Measurement.)

print("Circuit:")

print(circuit)

Simulate the circuit several times.

simulator = cirq. Simulator()

result = simulator.run(circuit, repetitions=20)

print("Results:")

print(result)

Circuit:

(0, 0): ───X^0.5───M('m')───

Results:

m=01110011010101001001

Result

With Cirq and Quantum AI (as well as the other big players IBM and Amazon), Google offers not only a

framework for local installation, but an entire platform for the development and execution of algorithms.

Just like IBM, Google is also a leader in the development of its own hardware and also offers it to the user,

or allows remote access to globally available quantum processors and simulators, including AQT, Azure,

IonQ, Pasqal and Rigetti. Researchers with approved projects can run jobs on Google's comprehensive

infrastructure.

SQUANCH

SQUANCH

Repository https://github.com/att-innovate/squanch

Language Python

OS Platform-independent: Python interpreter required

Type Simulation of multiparty networks

Focus Simulation of quantum networks

Feature contains classical and quantum error models

License WITH License

Website https://att-innovate.github.io/squanch/index.html

Registration No restriction

Description

SQUANCH is also an open-source Python framework for creating parallelized and distributed simulations of

quantum information. Although SQUANCH can be used as a universal simulation library for quantum

computers, it was developed specifically for simulating quantum networks. It should be possible to test

ideas for quantum transmission and network protocols. The package contains several modules, including

extensible quantum and classical error models, as well as a multithreaded framework for the high-

performance manipulation of quantum information.

Installation

As with all other simulators, it is recommended to install them in a virtual environment (Anaconda, VENV).

Under certain circumstances, a Python "distribution" should also be chosen, which already contains some

scientific packages such as matplotlib, in order to be able to use all functions easily.

pip install squanch

Structure and Modules

Figure 22: Source https://att-innovate.github.io/squanch/overview.html#information-representation-and-processing

Above is a schematic overview of the modules available in the SQUANCH framework. The QSystem is the

most basic class and represents a multi-particle quantum state and is represented as a density matrix.

Ensembles of quantum systems are efficiently handled by QStreams, and each QSystem has references to

its quabits. Functions in the Gates module can be used to manipulate the state of a quantum system.

Agents are generalized quantum mechanical "actors" that are initialized from a QStream instance and can

SQUANCH

https://github.com/att-innovate/squanch
https://att-innovate.github.io/squanch/index.html

SQUANCH

change the state of the quantum systems in their stream object, typically by interacting directly with

qubits. Agents run in parallel in separate processes and are connected by quantum and classical channels

that apply customizable error models to the transmitted information and synchronize agents' clocks.19

Example

The example is intended to show how a QStream including QSystem, which contains the QuBits, works in

the context of a communication between Alice and Bob. After creating a stream with two QuBits within a

QSystem, one of these two QuBits is modified by the Hadamard gate. The two communication partners are

children of the agent class and in this case are responsible for sending, receiving and measuring. Both

partners share an output through which Bob communicates the result of his measurement. It is important

here that the logic is within the agents by overriding the respective run() function.

from squanch import *

class Alice(Agent): def run(self): self.qsend(bob, a)

class Bob(Agent): def run(self): abob = (self.qrecv(alice)) abobm =

abob.measure() self.output(abobm)

stream = QStream(2,1)a, _ = stream.system(0).qubits

H(a)

out = Agent.shared_output()

alice = Alice(stream)bob = Bob(stream, out = out)

alice.qconnect(bob)alice.start()bob.start()alice.join()bob.join()

print(out["Bob"])

19 arXiv:1808.07047v1 [quant-ph] 21 Aug 2018 https://arxiv.org/pdf/1808.07047.pdf

SQUANCH

Illustration 23: Jupyter Notebook IDE

Result

SQUANCH is a universal simulation library for quantum computers with a focus on mapping quantum

networks. Due to the modular structure, users have various options for implementing algorithms and

protocols. The developers themselves offer many technical backgrounds and examples of Quantum

Teleportation, Superdense Coding, Man-In-The-Middle Attack and Quantum Error Correction in their

repository.

SeQUeNCe

SeQUeNCe

Repository https://github.com/sequence-toolbox/SeQUeNCe/

Language C++, Python, Makefile

OS Platform-independent: Python interpreter required

Type protocols, network parameters, and topologies

Focus Effects in quantum networks on the lower network layers

Feature Intermediate storage of quantum states

License Open Source License

Website https://sequence-toolbox.github.io/index.html

Registration No restrictions

Properties

SeQUeNCe is an event-oriented, Python-written, freely available simulator for the areas of (quantum)

hardware, management for entanglement, resources, networks and applications20. The simulator is

particularly suitable for simulating events in the lower network layers (hardware, connection layer): three

hardware components are required (quantum memory, quantum channel and detector) just to generate a

quantum superposition state.

Installation

Python 3.7 or higher is required to install the simulator. SeQUeNCe can then be installed from the GitHub

repository using the following commands:

git clone https://github.com/sequence-toolbox/SeQUeNCe.git

cd Sequence-python

pip install .

Example

As an application, the generation and measurement of a Bell pair in SeQUeNCe is shown:

Figure 24: Hardware structure for creating entanglement21

The quantum memory in Figure 24 consists of an atom, which in this example is in the superposition state:

Ψ =
1

√2
(|0⟩ + |1⟩)

The detector is used to measure the condition. The probability of measuring the state |0> or |1> is 50%.

20 Sequence Paper: https://doi.org/10.48550/arXiv.2009.12000
21 https://sequence-toolbox.github.io/tutorial/chapter2/hardware.html

SeQUeNCe

https://github.com/sequence-toolbox/SeQUeNCe/
https://github.com/sequence-toolbox/SeQUeNCe/blob/master/LICENSE
https://sequence-toolbox.github.io/index.html
https://sequence-toolbox.github.io/index.html
https://github.com/sequence-toolbox/SeQUeNCe.git

SeQUeNCe

First, the two nodes (quantum memory, detector) must be created:

class for Quantum memory

class SenderNode(Node):

self.memory = Memory('node1.memory', tl, fidelity=0, frequency=0,

efficiency=1, coherence_time=0, wavelength=500)

class Quantum receiver

class ReceiverNode(Node):

self.detector = Detector('node2.detector', tl, efficiency=1)

In the case of quantum memory, it is necessary to specify further parameters, such as the coherence time

and the quality of entanglement.

The protocol determines the behavior of the counter when a photon arrives. When detecting a photon, the

counter's counter is increased by 1:

class Counter():

 def __init__(self):

 self.count = 0

 def trigger(self, detector, info):

 self.count += 1

The simulation time in picoseconds and the two nodes are defined below:

tl = Timeline(10e12)

node1 = SenderNode("node1", tl)

node2 = ReceiverNode("node2", tl)

To connect the quantum memory and detector, the definition of a quantum channel – attenuation=0,

length=1km- is required:

qc = QuantumChannel("qc", tl, attenuation=0, distance=1e3)

The state of the quantum memory is now set to the superposition state:

node1.memory.update_state([complex(0), complex(1)]

The quantum memory now needs to be excited and this event passed to the event handler:

process = Process(node1.memory, "excite", ['node2'])

event = Event(0, process)

tl.schedule(event)

After passing to the event handler, both nodes can be started:

tl.init()

tl.run()

The output of the program is the number of detected photons and the simulation duration:

detection count: 1

detection time (ps): 4999950

SeQUeNCe

Result

Like Netsquid, SeQUeNCe is an event-oriented simulator, but it is more focused on simulating physical

events. Programs in this simulator are therefore more complex, but depict processes and events more

realistically. Users can use a variety of parameters such as quality of entanglement, coherence time, etc.

customize the simulations. Compared to other simulators, SeQUeNCe is more complex and requires more

training time.

QKDNetSim

QKDNetSim

Repository https://github.com/QKDNetSim/qkdnetsim-dev

Language C/C++, Python, Perl

OS Linux

Type QKD Simulation Module

Focus QKD base in overlay or TCP/IP mode

Feature Based on the NS-3 Network Simulator

License GPL 2.0 License

Website https://www.qkdnetsim.info/documentation/

Registration No restrictions

Properties

QKDNetSim22 is a module for the NS-3 network simulator written in C++ and therefore not a standalone

simulator. With this expansion module, it is possible in NS-3 to simulate networks with QKD (Quantum Key

Distribution) in two operating modes: overlay or single TCP/IP mode.

Installation

Note – The latest Ubuntu version running QKDNetSim is Ubuntu 18.04. This version was also used for

testing the simulator. To install it, the following commands must be executed in the terminal:

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install gcc g++ python python-dev mercurial bzr gdb

valgrind gsl-bin doxygen graphviz imagemagick texlive texlive-

latex-extra texlive-generic-extra texlive-generic-recommended

texinfo dia texlive texlive-latex-extra texlive-extra-utils

texlive-generic-recommended texi2html python-pygraphviz python-kiwi

libboost-all-dev git flex bison tcpdump sqlite sqlite3 libsqlite3-

dev libxml2 libxml2-dev libgtk2.0-0 libgtk2.0-dev uncrustify

libgsl23 python-pygccxml libcrypto++-dev libcrypto++-doc

libcrypto++-utils –y

Then the QKDNetSim code must be downloaded and compiled:

cdgit clone https://github.com/QKDNetSim/qkdnetsim-dev.git

cd qkdnetsim-dev./waf configure./waf

Example

As an example, a QKD channel for transmitting a key between two hosts will be shown. The example is

already included in the QKDNetSim examples and is located in the Git repository folder qkdnetsim-

dev/scratch. From the qkdnetsim-dev folder , the program can be started with:

./waf --run scratch/qkd_channel_test

Output of the program:

Source IP address: 10.1.1.1Destination IP address: 10.1.2.2Sent

(bytes): 640 Received (bytes): 640Sent (Packets): 1 Received

(Packets): 1Ratio (bytes): 1 Ratio (packets): 1

22 Paper QKDNetSim: https://link.springer.com/article/10.1007/s11128-017-1702-z

https://github.com/QKDNetSim/qkdnetsim-dev
https://www.qkdnetsim.info/documentation/
https://www.qkdnetsim.info/
https://github.com/QKDNetSim/qkdnetsim-dev.git

QKDNetSim

The output shows the IP addresses of the hosts as well as the number and size of the transmitted packets.

In addition to the output on the command line, the program also generates diagrams that show data such

as the transfer rate or the buffer sizes of the keys on the individual hosts:

Figure 25: QKD buffer on host 1

Figure 26: Key size in bits as a function of time

Result

The simulator is especially suitable for users who already have experience with the NS network simulator

and have good C++ language skills. For simulations, gnuplot can be used to create graphics in *.png

format from the *.plt files generated by the program, which can be individually adapted if necessary. So

far (as of 14.07.2022) QKDNetSim can only be installed on Ubuntu distributions.

QKDSimulator

QKDSimulator

Repository Not public (contact developer)

Language Python

OS Unknown/Web Browser

Type Pure QKD Simulator

Focus Full QKD stack or single simulation

Feature Very detailed results

License Not public (contact developer)

Website https://www.qkdsimulator.com/

Registration Unnecessary

Description

QKD-Simulator is a web application for the simulation and analysis of quantum key distribution protocols.

The simulator relies on a QKD simulation toolkit that allows a wide range of parameters to be adjusted for

individual components and sub-protocols in the system, e.g. quantum channel, sifting, error estimation,

matching/error correction, data protection reinforcement. Each simulation provides detailed information

about the intermediate and final stages of the protocol.23

Figure 27: Web Interface of the QKDS Ivulator

23 https://www.qkdsimulator.com/

QKDSimulator

https://www.qkdsimulator.com/
https://www.qkdsimulator.com/

QKDSimulator

Installation

Since it is a web application, no installation is necessary. However, a simulation engine is active in the

background, which runs the QKDSimulator and is part of a toolkit for quantum key distribution.

Implementation

The implementation of the backend QKD toolkit that powers this website is designed to be reusable by

relying on a component-based and fully modular approach, allowing each sub-protocol to be updated or

replaced in an isolated manner. The current version offers an implementation of the entire QKD stack, i.e.

quantum channel/transmission, key sighting, authentication with universal hashing, error estimation,

matching/error correction and data protection reinforcement. The quantum channel currently only

supports the BB84 protocol. The QKD simulation toolkit is fully implemented in Python and uses standard

scientific libraries such as Scipy, Numpy, Matplotlib, Quantum Information Toolkit (QIT) and PyCrypto24

[information from developers].

24 https://www.qkdsimulator.com/about

https://arxiv.org/ftp/arxiv/papers/2003/2003.06557.pdf
https://www.qkdsimulator.com/about

QKDSimulator

Figure 28: Example of a result

QKDSimulator

Figure 29: Elaborate and detailed plots for each result

Result

The QKDSimulator impresses especially those users who are mainly interested in QKD and want to

understand this algorithm without installing any program, registering or programming themselves. The

documentation is not yet available, but the results are described in detail in text passages. Also, every

intermediate step is explained in detail and the plots are of high quality. The web application has only a

few pages, which is both an advantage and a disadvantage. Currently, only the BB84 variant is supported,

which is the most original and unmodified method of quantum key distribution.

Amazon (Braket)

Amazon (Braket)

Repository https://github.com/aws/amazon-braket-sdk-python

Language Python

OS Python interpreter required

Type Platform

Focus AWS Integration

Feature Processors from D:Wave, IonQ, Rigetti, OQC

License Apache 2.0 License

Website https://aws.amazon.com/de/braket/

Registration Not for the SDK, for the platform yes (credit card)

Description

Amazon Braket is a fully managed AWS service designed to help researchers, scientists, and developers get

started with quantum computing. Algorithms can be designed, tested, and run on various quantum circuit

simulators and real quantum hardware in the web interface. In addition, it is also possible to design hybrid

algorithms that include classical resources. Amazon also supports the use of Jupyter Notebooks with pre-

installed algorithms, resources, and developer tools. Braket provides on-demand access to various types of

quantum computers. Access to gate-based quantum computers from IonQ and Rigetti, as well as to a

quantum annealer from D-Wave, is to be made as easy as possible for the user without having to obtain

access from individual providers.

Installation

One thing in advance: A large part of the features mentioned above are only available by registering with

AWS. Even if they are free plans and there are limited functionality and monthly or absolute time

restrictions, credit card information is necessary to complete a registration.

For this reason, we will limit ourselves to installing the Amazon Braket Python SDK at this point. Although

this also has a strong connection to Amazon's AWS, it can be easily installed on a local computer outside

the cloud and has a local simulator, which is also used in the following example.

As always, it is recommended to create a virtual Python environment. The installation of the Braket SDK is

done with:

pip install amazon-braket-sdk

Example

In our example, we want to create a Bell pair (EPR-pair) by applying a Hadamard gate to QuBit 0, or we

want to create a CNOT relationship between QuBit 0 and 1, in which QuBit 0 acts as the control QuBit. As

already mentioned, we select the local simulator included in the SDK as the simulator device and let the

circuit execute 100 times and output the result in the command line (turquoise mark).

This example also shows that with Braket, little code is enough to run a simple simulation, although

Amazon tries to lure the user into the cloud for their first steps by referring mainly to their WEB IDE in their

documentation and to devices in the cloud for execution.

https://github.com/aws/amazon-braket-sdk-python
https://aws.amazon.com/de/braket/

Amazon (Braket)

>>> from braket.devices import LocalSimulator>>> device =

LocalSimulator("default")>>> bell = Circuit().h(0).cnot(0, 1)>>>

task = device.run(bell, shots=100)>>>

print(task.result().measurement_counts)

Counter({'00': 56, '11': 44})

Result

As you can see, the result is only 00 and 11, which corresponds to an ideal process without noise and thus

a pure simulation without external interference. With a distribution of 56% to 44% in this run, one can

speak of an equal distribution for 100 shots, which would approach the 50%/50% distribution with an

infinite number of repetitions.

Figure 30: AWS landing page

Result

With Braket, Amazon offers convenient access to an entire environment with build, test and run tools on

the topic of quantum computing. Fortunately, the core of this service, i.e. the Braket SDK, is available to

the user without registration outside the cloud, without having to commit to Amazon for initial tests.

Quantum Programming Studio

Quantum Programming Studio

Repository https://github.com/quantastica/quantum-circuit

Language Drag&drop / JavaScript

OS Web browser

Type Circuit Simulator

Focus Extensive REST API

Feature Conversion to many formats/languages

License MIT License

Website https://quantum-circuit.com

Registration A free registration is required to use the web interface

Description

quantum-circuit is an open-source quantum circuit simulator implemented in Javascript. According to the

developers, simulations with 20+ qubits in the browser or on the server are no problem.

The Quantum Programming Studio is a web-based graphical user interface that allows users to construct

quantum algorithms and then simulate them directly in the browser or run them on real quantum

computers. The circuit can be exported to multiple quantum programming languages/frameworks and can

be run on various simulators and quantum computers.

Supported platforms include: Rigetti Forest, IBM Qiskit, Google Cirq and TensorFlow Quantum, Microsoft

Quantum Development Kit, Amazon Braket.

Installation

No installation is necessary. One can use a simple drag and drop interface to create a schematic that

automatically translates into code, and vice versa – you can enter the code and the plan will update

accordingly.

Figure 31: The Drag&Drop Editor (here: Circuit Bell Pair)

https://github.com/quantastica/quantum-circuit
https://quantum-circuit.com/

Quantum Programming Studio

If you are still interested in installing your own, you can implement your own instance in JavaScript with

npm install --save quantum-circuit. Development can also be done with Jupyter Notebook,

as long as a JavaScript kernel is installed.

Figure 32: Automatic translation into code (code editor)

Registration

In order to use the service, a free registration under https://quantum-circuit.com is required. Projects can

be saved there and shared with others. At the moment, 1437 projects are open to the public.

Simulation in the browser

The easiest way to simulate is to run it directly in the browser. To do this, simply open the desired project

and then execute it via the "Simulation" tab. For each click on the "Simulate" button, one pass is triggered.

https://quantum-circuit.com/

Quantum Programming Studio

Figure 33: Results of the simulation in the browser

Simulation in the cloud and on real hardware

The "Run" tab opens a documentation with a description of which remote backends can be used and what

is needed. Mainly the QPS client is needed here, which connects to the QPS server via web sockets. With

this client, Quantum Programming Studio UI can be connected to Rigetti QCS, Rigetti Forrest SDK, IBM

Qiskit and Quantastica Qubit Toaster. However, Rigetti's resources seem to be withheld from users who

register with Rigetti as members of an organization.

Apis

An important core feature is interoperability with other languages. For example, circuits can be imported

from OpenQASM and Quil and circuits can be exported to OpenQASM, pyQuil, Quil, Qiskit, Cirq,

TensorFlow Quantum, QSharp and QuEST. Circuits can also be saved in SVG format.

Via the Rest API, almost any format can be served by a simple http request. The appropriate links can be

found in the respective project details.

Quantum Programming Studio

Figure 34: Rest API of the test project

Result

The Quantum Programming Studio is a recommendation for all friends of a web-based, graphical user

interface. It makes it possible to construct quantum algorithms and simulate them directly in the browser.

If this is not enough, real quantum computers are also available. The circuits can be exported to multiple

quantum programming languages/frameworks, etc., platform-independently, and run on various

simulators and quantum computers. The simple user interface automatically creates code, or translates

code into a circuit; Charts are updated in real-time.

Microsoft Azure Quantum/QKD/Q#

Microsoft Azure Quantum/QKD/Q#

Repository https://github.com/microsoft/QuantumLibraries

Language Q#, Python

OS Azure packages can be installed platform-independent
Type QKD or platform

Focus Simulation of quantum circuits,
optimization tasks, simulation of a
quantum computer with fullstack QKD

Feature Access to other providers

License MIT License

Website https://azure.microsoft.com/de-de/resources/
development-kit/quantum-computing/

Registration Not necessary for QDK; You get credits for Azure (Quantum)

Description

The QDK is the development kit for Azure Quantum. Quantum applications can be created and executed

with Q#, Qiskit or Cirq, both on real quantum hardware and with classical simulators, online or offline.

Other tasks such as optimizations, etc. can also be formulated and carried out. As with IBM

Quantum/Qiskit and Google Quantum AI/Cirq, a distinction must be made between the actual framework

(SDK) and the platform built on top of it. The installation of the SDK is possible, although Microsoft also

tries to lure the user to the platform for development and promises credits for various resources.

Q# is a quantum-focused high-level programming language from Microsoft and offers an approach to the

development of quantum programs.

QDK

The Quantum Development Kit includes feature-rich integration with Visual Studio, Visual Studio Code, and

Jupyter Notebooks. The Q# programming language can be used standalone, in notebooks and on the

command line, or via the host language with Python and . NET interoperability.

https://github.com/microsoft/QuantumLibraries
https://azure.microsoft.com/de-de/resources/development-kit/quantum-computing/
https://azure.microsoft.com/de-de/resources/development-kit/quantum-computing/
https://azure.microsoft.com/de-de/services/quantum/

Microsoft Azure Quantum/QKD/Q#

Figure 35: Creating a workspace in Azure

Figure 36: Azure Quantum already offers some predefined programs and circuits

Installation

There are various ways to install the QDK. This means that Q# not only runs together with Python and

.NET, but other driver programs for host languages such as C# or F# can also be used. Both VS Code and

Jupyter notebooks are suitable for development, or a client-server relationship between VS Code and

notebooks.

For this test, we decided to use a WSL2 environment with Ubuntu 20.04. As recommended by Microsoft,

Anaconda was installed as a Python distribution and an environment was created specifically for QKD.

Microsoft Azure Quantum/QKD/Q#

After initialization by the qsharp package, the Jupyter server can be started and a notebook with a Q#

kernel can be created.

Installation Anaconda (Download Installation Script)

bash Anaconda3-2022.05-Linux-x86_64.sh

Creation and activation of new virtual environment including required packages

conda create -n qsharp-env -c microsoft qsharp notebook

conda activate qsharp-env

Initialization

python -c "import qsharp"

Starting the Notebook Server

Jupyter Notebook

Creating a New Notebook with the Q# Kernel

New → Q#

Figure 37: Jupyter Notebook Web Server

Example

In this example, a QuBit in the state |0⟩ and are superposed by the function H() that there is a 50% chance

of either 0 or 1 in the following measurement, see Figure 38.

operation SampleQuantumRandomNumberGenerator() : Result {

 use q = Qubit(); // Allocate a qubit in the |0⟩ state.
 H(q); Put the qubit to superposition. It now has a 50% chance

of being 0 or 1.

 let r = M(q); Measure the qubit value.

 Reset(q);

 return r;

}

With the magic function below, the result can be output directly below the cell.

%simulate SampleQuantumRandomNumberGenerator

Microsoft Azure Quantum/QKD/Q#

Figure 38: Example of a simple program on the web interface of the Jupyter web server

Result

The open-source Quantum Development Kit for Azure Quantum provides tools for developing quantum

applications on hardware-accelerated compute resources in Azure or on the on-premises host. According

to Microsoft, Q# is completely hardware-agnostic, which means that quantum computing concepts can be

expressed independently of future developments. Q# programs can also be targeted to run on various

quantum hardware backends in Azure Quantum. A Q# program can be compiled into a standalone

application or replaced by a Q# program created in Python or in a . NET language.

All in all, Microsoft's Azure Quantum platform is a full-fledged environment like Amazon Braket, or IBM

Quantum Qiskit, but with the difference that Microsoft uses its own Q# language for this.

https://azure.microsoft.com/de-de/services/quantum/

Microsoft Azure Quantum/QKD/Q#

Closing remarks

We hope that this report will make it easier to enter this extremely interesting world of quantum

simulators and that testers will have a lot of fun with further application examples. The test report

could only take into account current simulators and platforms; it can be assumed that these

frameworks are constantly changing and that new simulators will also be used in the future.

