vdzl yidzy {AYdz I 02 N&

Test and overview of the most promising simulators

Test report of the DFN Wihhb in Erlangen, as of 15.07.2022

Content

) 5 2.
QUANTUM NETWORK EXPLORER.......ccouuiiiiicmmm e crrrnis s ee s s mmmm s s s e nnn s s s e nmnnas 8
SIMULAQROQOIN.cciittuuuiesierrsssmmmmerssssssssssssssssssssssmmmmsesessssssssssssssnsssssmmmmssssssssssssssssssesesssmmnnseensnns 11
NETSQUID.... .o iceiiueeiiiecsesmmmm e s s srsrrsss e ss mmmm e s sssesasas s ssseesssssmmmmssassssssssnsnnssnssssesmmmmsssesnnsnnns 15
QUNETSIM....oiiiiiiiiiiieiisuicsmmmm s s s e e s s s s s s s mmmm e s an s s s s s e e e aana s s mmmm s se s ee s s aasa s ssensnnns mmmm s e e nnanssnns 18
| X PP 22
GOOGLE QUANTUM Al (CIRQY) .. .ceiururuiesierrmmmmsserrnsssssssssrssssssssmmmmassssssesssssssssesssnssmmmmssssssssssssnns 25
SQUANCH.....c ettt cmm e e e s e e ee st e s et e et ee e e e et mmmm e e se s e e e e e e enaann s e e e e e nnnan 27
0T = 10 | [PSS 30
QIKDINETSIM. ...ttt s te e ettt se s e s ee e aaa s mm e ee s e e e e e a b e e e e e et mmmm e e e se s e e e e e e e e na s s mmm e e e enen 33
QKDSIMULATOR....ccieuuieiiieitatu e s e s e e ea b s s e s et s mmmm e e ses s ae e e e e e san s s M ae e ee e en s s s eesenns mmmm e e nas 35
AMAZON (BRAKET)....ccuuuiiiieiitiuues mmmmsssss s esassssseesesssmmmm s ss s seseeeasaassses mmmm s s eeensasssssessnnnssnsmmmn s 39
QUANTUM PRARBMMING STUDIOQ.......ccciiuiiiiiieieiimmmm e eeeaese s s sessasee s s mmmma s s s eessaasssseessnss mmmm e sens 41
MICROSOFT AZURE QUANTUM/QKDIQZE.........ccoetieuicmmmeineeeseseeeaiaesss s s mmmm e s eesanasansssessensns s mmmn d 45
Foreword

This report presents various simulators that have been examined in more detail in individual tests.

These are platforms, software development kits (SDKs), standalone simulators and simulation
engines. For all simulators examined, their properties are dasdrand it is explained for which

application they are most suitable. In addition, there is an application example that has been tested

in a concrete installation; the fastest or most practical installation method is also expl&ael.
test report is cocluded with a conclusion.

Qiskit
Qiskit

Repository https://github.com/Qiskit/giskit
Language Python

oS Crossplatform

Type SoftwareDevelopment Kit (SDF
Focus Pulse / Circuits

Feature Web platform/IDE available
License Apache License 2.0

Website https://qiskit.org
Registration no

Qiskitis an SDK in Python provided by IBM for creating and executing algorithms and circuits and for
generally working with noisy quantum computers. Qiskit can be installed completely independently on any
popular operating systenand can run simulations indepdantly. It consists of several components,

although only two main ones will be discussed here.

Qiskit Terrds the basic component on which all the others are built. Terra provides the ability to assemble
guantum programs at the circuiandpulselevel ,and manages the execution of batches of experiments
on remote devices and backend communication.

Qiskit Aeroffers various simulators for quantum computers with realistic noise models hdéstatly on

the user's devicer HPC resourceavailable via the cloud. IBM itself calls its simulator services "advanced
cloud-based classical emulators of quantum systems". At this point, it should already be mentioned that
Qiskit is closely linked to IBM's "quantum cloud” and that a simulatiorbeamin locally on the notebook

as well as on "classic" hardware in the IBM cloud. The highlight here, however Zisstidajuantum
hardware is also available free of charge to a limited extent and you can compare simulation and real
process.

Interface(3 ¢ It should also be emphasized that you also have the choice of using a local user interface or
using IBM's/Veb Interfaceboth of whichJupyter Notbooksupport. Advatage of the Web Composer
(Figurel) is the drag & drop editor, which transfers the designed circuit directly to Python and displays
result forecasts in real tim

Backendsepresent either a simulator or a real quantum computer and are responsible for executing
quantum circuits and returning results. As with some other software simufatoey can be exchanged.
Tablel shows the backend simulators provided by IBM. The state vector is the default simulator here.

1 Not mandatory

2 atency; not all processors and locations are free

3 A software simulator is the term used to describe the entire framework/SDK, which operates an interchangeable simulateenseiof a
simulation core as a backend

https://github.com/Qiskit/qiskit
https://qiskit.org/
https://quantum-computing.ibm.com/
https://jupyter.org/

Qiskit

]
= El BB
2
E]
£

Figurel: IBM's Web Composer

Tablel: Available Backend Simulators

Statevector Stabilizer Extended MPS QASM
Type: Schrddingern Type: Clifford stabilizer Type: Matrix Type: General,
wavefunction QuBits: 5000 Type: Extended | Product State contextaware
QuBits: 32Noise | Noise modeling: | Clifford (e.g., QuBits: 100 Noise| QuBits: 32 Noise
modeling: Yes Yes (Clifford only)| Clifford+T) modeling: No modeling: Yes
QuBits: 63 Noise
modeling: No

Communityg A major advantage of the framework is its large community and the associated variety of
media. There are already a variety of media and opportunities for interested parties to deal with the world
of quantum computing. The Qiskit Foundation itself maimszaY ouTube chann&lith many tutorials,

talks and background information on the topic and regularly organizes quantum challenges, camps,
hackathons and seminars and meetups. IBM also maintains itsxawispacean Slack, which you can join.

Installationg If you are afraid of an installation at first, you can start directlyBiki's QuanturfiLab. If you
prefer to work locally, you can ug# install giskit to initiate the installation. The manufacturer
recommends a virtual environment withnaconda Since we only want to demonstrate a small circuit
here, we make do with the prastalled Python distribution and create a virtual environment with
python3 - m venv giskit - env/ >and install matplotlib in addition to g iskit to be able
to visualize the results.

Simulation on classic hardwag¢dNe now create a relatively simple circuit with 3 qubits, which we put into
superposition using a Hadamard gate and measure directly afterwards. We start Python and import the
entire library for simplicityfrom qiskit import * . Then we create a circuit with 3 qubits and 3
classical bits each to store the result theye = QuantumCircuit(3,3) . The QuBits are initially in

4 Registration required
5 Activation withsource qiskit - env/bin/activate

https://www.youtube.com/c/qiskit
https://qiskit.slack.com/
https://lab.quantum-computing.ibm.com/
https://www.anaconda.com/products/distribution

Qiskit
the stategy which is why a measurement would also result in 0. We therefore loop through all QuBits anc
add the Hgate and a measurement in each case. Since all QuBits are now in the state, we can now expec
a random value of 0 or 1 through measurement. Witltfgc. draw() the generated circuit can be

drawn, sed~igure2. After selecting the backend@dblel) the "job" is executed. Finally, the results are
plotted in a histogram.

Figure2: Example of a simple circuit

1 from qiskit import *
2 from qiskit.tools.visualization import plot_histogram

3 gc = QuantumCircuit(3,3)

4 forjinrange(3):

gc.h(j) #Hadamard Gate
6 gc.measure(j,)) #Messung
7 qc.draw() #Zeichnen the Figure 2
8 backend = Aer.get_backend('qasm_simulator’) #Wahl of the backend job =
9 execute(qc, backend)
10 #Ausfuhrenplot_histogram(job.res ult().get_counts()) #Plotten of
11 the histogram
0.16
0132 0135
0123 p1z1 126 0135 0.126
0.12 0.112
%0.0B
£
0.04
0.00 T T
[i~y o i~ ~ ey
s § 5§ § § § 5 3§

Figure3: Result histogram of the example circuit

The histogram from our example is intended to show that by applying a Hadamard gate, a superposition
state is created, in which the QuBit decays into the state O or 1 with a probability of 50% after the

6 Superposition

Qiskit
measurement. Since we have applied this gate equalbtl qubits, we have a stochastically balanced
histogram in which the probability of the occurrence of all permutations is the same.

True Quantum Hardware IBM not only provides different simulator types, a circuit composer, and a lab
for interested uses’ but alsoreal quantum hardware This is offered as part of IBM Quantum Services and
is referred to as the "System". Some of these systems are reserved-éatled "Premium Plan Clients",

but there are currently 7 systems that are accessible to thiglip via a standard registration with IBM
Quantum. There are different processor architectures, revisions, and design variants. Some of these are
also subsections of a larger chip. An overview of current architectures and their specialties is available i
Figure5 . In addition to the systems, programs are also offered that are intended to speed up the
execution of circuits.

QV and CLORSN addition to the nunber of qubits, other attributes that describe the performance,
quality, or scalability of a system are also important. IBM primarily specifies QV and CLOPS among its
available quantum processors, which are supposed to play a role in the execution aimpsognd circuits.

QV or "Quantum Volume". Is a value that reflects the performance oflgased quantum computers,
regardless of the underlying technology.CLOPEircuit Layer Operations Per Second", is a value that
indicates how many layers of a QV circuit a QPU (Quantum Processing Unit) can execute per unit of time.

Figured: Example of another simple circuit

Running on real quaum hardwareg As we've already seen, simple circuits with a small number of qubits
can be simulated well on classical hardware. However, a simulator is an ideal quantum device that does
not know true quantum noise due to decohereficéaulty gates or masurements.

7IBM's name for their Web IDE
8 Phenomenon of quantum physics, arising from unwanted interaction with environment

Qiskit

Canary
Up to 16 qubits
Latest revision: 1.3

Falcon
Up to 27 qubits
Latest revision: 5.11

Hummingbird
Up to 65 qubits
Latest revision: 2.0

Eagle | 2021
Up to 127 qubits
Latest revision: 1.0

Figure5: Different processor architectures

ibmg_belem
Status timeline Completed
Details

Result - histogram

Measurement probabilit

Figure6: Completed job; Result

Qiskit

Choose a system or simulator Choose your settings

Provider
Q

ibm-g/open/main

Job limit: 5 remaining
Online
9

2.5K

Name your job

Job name

Online
4

2.5K

Figure7: Selection of the system

Conclusiorg Qiskitis a powerful quantum simulation software designed for pulses and circuits, with
continuous development and a strong community. But netwalated concepts can also be implemented
on a physical level with Qiskit. Fault models are part of the softwarecande validated through access
to real hardware. Qiskit is very beginAgiendly among quantum simulators with a #ilkdged ecosystem,
not least because of the included "textbook", which explains the basics as well as provides useful
examples.

Quantum Network Explorer

Quantun Network Explorer

Repository https://github.com/QuTechDelft/gne-adk

Language Drag & Drop *e Quantum
os Web browser «*+ * Network Explorer
Type Web Application o® ByQufech
Focus Network & Distributed Applications
Feature Application Development Kit for Quantum Netwa
Explorer (QNHADK)
License MIT License (QNEDK)
Website https://quantum-network.com

Registration No

The Quantum Network Explorer, as the name suggests, is a solutiorExperimentare instances of an
provided by QuTechVeb Applicatiorwith a focus on a visually clear application that are started

simulation of distributed applicationsand Network Protocols No automatically as soon as you run
registration is necessary and the simulation can be used them. If you still want to register,
independently of the operating system via the web browser. An it allows you to save your
extremely interesting point, especially for network operators, is the "experiments" and continue at a
easy configrability of the secalled 'Fidelity®" for junctions and later time.

routes, see als&igurelO.

Ready to Use Inexperienced users or users without Python programming knowledge can already use the
three applications Distributed CNOTState Teleportationand QKD lllustration 8) trywithout having to

write a single line of code. These examples are provided with detailed descriptions of the protocols and
pictures and are intended to enable a quick start. The also exiStinckstart Guidelescribes the first

steps and gives the user three different tasks to introduce him to the application.

lllustration 8: Prebuilt Applications in QNE (https://www.quantunetwork.com/)

QNEADKis theapplication development kiior Quantum Network Explorer and is aimed at advanced
users who want to write their own applications. QRBEK provides a CLI with commands to create the
necessary file&that define applications and experiments. When the experiment is configured, th&an
run on the locatt simulator.

9 Fidelityis a measure of the quality of quantum information processing
10 Guidelines must be followed for development.
11 At the moment, QNEADK is only available locally

https://github.com/QuTech-Delft/qne-adk
https://quantum-network.com/
https://www.quantum-network.com/
https://www.quantum-network.com/applications/
https://www.quantum-network.com/qne-quick-start/
https://www.quantum-network.com/adk/

Quantum Network Explorer

Web-only applicatiorg Examples are already available, so there is no need to install or program your own
circuits. The tool is initially purely wdiased and has a clear visualization, which can significantly increase
leaming success. Therefore, this application is suitable for both the new and inexperienced user, as well a
the budding expert who would like to install the associated Application Development Kit for Quantum
Network Explorer (QNEDK). This includes everytigito build your own quantum network application.

Application example CN@ThatCNOT Gatis an
exclusve quantum gate that has two inputs and two
outputs. The ContreQuBitx (Figure9) indicates
whether QuBity is flipped. Like all quantum
operaions, the CNOGate is reversible. This means
that the operation can be completely reversed. This
behavior (entanglement) makes the gate extremely
interesting for distributed applications, as the two
entangled particles can be distributed before the
measuement and information is transmitted
instantaneously through the "nothing" through the
measurement.

Configure the network

Configure the network by selecting nodes and
channels below or on the map.

« Back to network

channel
W Leiden - The Hague

Elementary Link Fidelity

. 0995

Very Low Low High
0500 0750 0995

Figure9: The CNOT gate

Controller @ Leiden
N/

Fidelity: LOOO

Zaa
Target @ Delft
N

FigurelO: Configurable Fidelity for Nodes and Connections

In the following, we want to run through such an algorithm using an example in which we transfer a QuBit
from a site A (controller) to a site B (target) and then observe hoveasurement of another Qubit at site
A determines the status of this qubit at site B without further communication.

https://www.win-labor.dfn.de/quantentechnologien/grundlagen/#CNOT

Quantum Network Explorer

Controller original state

0

Theta: 1mrad
Phi: OTrrad

Target original state

Controller final state

0

Theta: 1mrad
Phi: OTrrad

Target final state

Theta: OTrad Theta: 1Trad
Phi: Omrad Phi: Omrad

Figurell: State of the Control and Target QuBits before and after transmission

Example Distributed CN@TThe first thing to do after starting the "Distributed CNOT" application is to
select one of three possible networks. You can choose between "Randstad”, "The Netherlands" and
"Europe". As you might expect, these differ significantly in size and thendestao be covered. We choose
Europe and now have the locations: Paris, Delft, Innsbruck, Copenhagen and Barcelona available to
assign the roles "Controller" and "Target" to them, as already indicated in the CNOT section. We decide o
Copenhagen ascontrol ler andInnsbruck as target, as a large part of the route runs through
Germany.

Next, both endpoints are configured withgate fidelity of 0.995 , for example, and the
intermediate channel with a relatively lolwk fidelity of 0.750 . After that, we put he input state
of the controller on PG so that thetarget QuBit flips with the input statgm

Visualizatiorg Now, when we start the simulation, we see how an entangled Qudbitis first created
between the controller and the target. Interestingly, this is not done via the route with the lowest hops,
but via an alternative route with higheidelity. This is followed by preparations of the qubits on both
sides, as well as gpcations of gates and measurements, followed by the transmission of results via a
classic channel.

Conclusiorg If you have not yet dealt with the topic of quantum algorithms relatively little, but still want to
deal with distributed applications and nebrks without familiarizing yourself with the mathematics

behind them, the Quantum Network Explorer could be a good choice. This stands out mainly with its
successful visualizations and can be easily configured via the web without having to installganythin

SimulaQron

SimulaQron

Repository https://github.com/SoftwareQuTech/SimulaQron
Language Python

oS Linux and macOS

Type From application to network stack

Focus Distributedapplication across multiple quantum processors and channels

Feature Exploring the implementation of a network stack

License Redistribution and use in source and binary forms, with orwithmodification, are
permitted provided that thefollowing conditions are met: sge<

Website http://www.simulagron.org/

Registraton -

Properties:

SimulaQrons a simulator designed for the development of platfeimdependent applications (mainly for

the application layer) as well as for network protocols. However, it is not suitable for testing or simulating
guantum repeaters, code, error correction and Quiitse*?. The simulator can be run on one or more
classical computers to simulate a network of distributed quantum processors. Libraries in Rust, Python an
C are provided for the development of programs. To simulate the quantum processors (backend), which
are connected to each other via a simulated communication network, SimulaQron uses the QuTip
simulator. Using Project®is also possible. In principle, any simulator for a quantum processor that has a
Python interface can be used as a backend. In addition, the simulator can be combined with NetSquid: An
appliation written in SimulaQron can be run via the CQC (Classic Quantum Combiner) module in a
Netsquid simulated network. This allows the influence of time, e.g. in the form of delays, to be taken into
account in an evendriven manner.

Installation
SimulaQrorcan be easily installed using pip:
pip3 install simulagron

To get the program up and running, the following entry must be changed after installation in file
simulagron.py in line 234 in thesimulagron folder (as of 04.07.2022):

@click.argument('value', t ype=click. Choice([b.value for b in
SimBackend.value]))

To

@click.argument('value', type=click. Choice([b.value for b in
SimBackend]))

12 Axel Dahlberg and Stephanie Wehner, "Simula@rérsimulator for developing quantum internstftware"”, 2019 Quantum Sci. Technol. 4
015001

https://github.com/SoftwareQuTech/SimulaQron
https://github.com/SoftwareQuTech/SimulaQron/blob/master/LICENSE
http://www.simulaqron.org/

SimulaQron

SimulaQron was tested with the OS Ubuntu 20.04.

Building SimulaQron NodgThe structure of a network node lifustration12 depicted:

Application Classical
program Communication
CQacC Platform independent

Classical
Communication

classical controller

Cuantum
Communication

lllustration12: Schematic Structure of a Network Node in Simula®ron

The lowest level is the quantum hardware or processor, which can generate and measure qubits. It also
has optical connections to other nodes. The processardnplatformdependent controller that has,
among other things, classic connections to other nodes.

The CQC (Classic Quantum Combiner) interface is provided by the pldi#pendent part and contains
commands e.g. for performing measurements and insiourc specifically for quantum networks such as
generating entanglement and transmitting QuBits.

Programming Modesg There are two different ways to access quantum hardware:

[Application Program]
1 }
Pythonlib Clib

) < CElCir[terfac_e D

COC backend

lllustration13: Possibilities of programming Simuta@'2

1. Native Mode In this mode, the hardware is accessed directly from the libFaristed in Python.
This mode grants full access to the quantum hardware, but this mode is specifically designed f
Twisted and will therefore hardly be used in future quantum netwdeks

2. CQC ModeCQC is a packet format that is used to send instructions to the netwaid oo
guantum hardware. To simplify programming via CQC, a C and Python library is pryvitied.
meantime, aRUSTTibrary is also available.

CQC format, The CQC instruction set includes a number of different commamndsntrol the quantum
processor. The following comparison shows the command to create a QuBbit in Python and the
corresponding CQC command:

Python Command CQC Command
Creating QuBit on nodel Request to allocate a QuBit
g=qubit(nodel) CMD_NEW

https://docs.rs/cqc

SimulaQron
CQC caalso be installed as a standalone Python module:

pip3 install cqc

Example

Bell Pair Generatiog A Bell Pair generation between two hosts (Alice, Bob) can be created as follows,
using Python and CQC interface:

1. Start SimulaQron via the following commancelcommand:
simulaqgron start
This command starts five hosts, two of which are named Alice and Bob respectively
2. Then use thed command to navigate to the following folder (folder with examples mubs

copied fromthe GitHub repository
):SimulaQron/examples/nativeMode/corrRNG/

3. After that, the following changes must be made in bebTest.py andaliceTest.py files
(as of 04.07.2022):

4. Replace hostConfig with host_co nfig

5. Replace socketsConfig with SocketsConfig

6. Then start the program witlfrun.sh (file is in the examples folder).

Output of the program

App Alice: Measurement outcome is: 0/1
App Bob: Measurement outcome is: 0/1

As can be expected afteneasuring the Bell state, the value for Alice and Bob is either O or 1.

Source codaliceTest.py

Initialize the connection
with CQCConnection("Alice") as Alice:

Create an EPR pair
g = Alice.createEPR("Bob")

Measure qubit
m=g.measure()

to_print="App {}: Measurement outcome is:
{}".format(Alice.name,m)

print("]" +" - "*(len(to_print)+2)+"|")

print("| " +to_print+" |")

print("|" +" - "*(len(to_print)+2)+"|")
The commandCQCConnection("Alice™) creates a host or node with theame Alice and at the
same time establishes a CQC connection to it.Allee.createEPR("Bob") command creates a

pair of bells between the two hostélice andBob.

Result

SimulaQron enables platforndependent development of applications using CQC teldgy Simulators
for quantum processors (backend) are freely selectable as long as they have a Python interface. The
simulator is designed for the development of applications for the application layer. For installation or
Launch of the Bell pair examplewias necessary to modify the code (as of 04.07.2022). Presumably, the

https://github.com/SoftwareQuTech/SimulaQron/tree/master/examples/nativeMode
https://github.com/SoftwareQuTech/SimulaQron/tree/master/examples/nativeMode

SimulaQron

code or documentation has not yet been adapted accordingly. Without these adjustments, the evaluation
of SimulaQron would not have been possible.

NetSquid

NetSquid NetSquid
Repository None available

Language Python ’
oS Platformindependent: Python interpreter require:

Type Performance study of the physical layer

Focus Simulation of a quanturAbased internet

Feature Modular design; Quantum Computing Library

License Free, but registratiomequired

Website https://netsquid.org/
Registration Necessary, free of charge

Properties

NetSquid (NETworBimulator for Quantum Information) is an evemtiented simulator suitable for
simulating events in quantum networks and quantum computing systems from the physical to the
application laye¥.

Installation

After the requiredregistrationy the NetSquid Python library can be downloaded by entering your
username and password with the following command:

pip3 install -- extra -index - url https://pypi.netsquid.org netsquid

Example

To illustrate the evenbriented nature of Netsquid, two hosts are supposed to send each other a QuBit,
measure it and send it back again. For this purpose, Netsquid hasalsd.discrete event simulation
engine which arranges events, e.g. the recajpta qubit, on a timeline and then processes them
chronologically:

Node Node

At

Ping == » Pong

lllustration14: Schematic representation of the progrém

13 https://www.nature.com/articles/s4200821-0064 78

https://netsquid.org/
https://forum.netsquid.org/ucp.php?mode=register

NetSquid

ping event pong event ping event
O -

pong event

. schedule
.. event

handle
event

timeline
’

Time progresses by stepping from event to event

Hgure15: Schematic representation and chronological sequence of an-eriented simulatioft
Network Components To build the network, the following components are required:

1 Two hosts or nodes, which serve as sender and receiver respectively
1 Two oneway quantum channels for transmitting the QuBits

Ping Pong

Quantum Channel

Quantum Channel

lllustration16: Schematic representatih of network topologif

The letters ZNode Ping) and XNode Pong) indicate the base in which the QuBits are measured. The
following are the most important foctions and start of the simulation with comments:

Create #Netzwerkknoten named Ping and Pong

node_ping = Node(hame="Ping")
node_pong = Node(name="Pong")

Create a class with a delay model for the quantum channels
class PingPongDelayModel(DelayModel)
Connect both nodes with the quantum channels

connection = DirectConnection(name="conn[ping|pong]",
channel_AtoB=channel_1,channel_BtoA
=channel_2)

Define protocol for sending, receiving, and measuring the QuBits

14 https://docs.netsquid.org/latestelease/quick_start.html

NetSquid

class Pin gPongProtocol(NodeProtocol)
Assign log to the nodes and specify in which base to measure:

ping_protocol = PingPongProtocol(node_ping, observable=ns. Z,
qubit=qubits[0])

pong_protocol = PingPongProtocol(node_pong, observable=ns. X)

Start logs in both no des and set the runtime of the simulation in
ns:

ping_protocol.start()
pong_protocol.start()

run_stats = ns.sim_run(duration=300)

Output of the simulation:

17.4: Pong measured |+> with probability 0.50
33.8: Ping measured |1> with probability 0.50
51.3: Po ng measured | - > with probability 0.50
69.7: Ping measured |0> with probability 0.50
87.8: Pong measured | - > with probability 0.50

The first entry indicates the time that has elapsed between two events. These times result from randomly
generated delaysRin gPongDelayModel) in the quantum channels. If a QuBit reaches the ping or pong
node, the result of the measurement and its probability are displayed. Due to the different basasgZ

A ping, XbaseA pong) in which measurements are taken, the result @& theasurement is random each
time (probability 50%, measured states: |0> or |1>: ping; |+> of pong).

Result

NetSquids suitable for simulating evertriented processes and procedures in quantum networks.
Compared to SeQUeNEw®hich is also a discrete event simulatddetSquid can simulate processes from

the physical to the application layer. SeQUeNCe, on the othedl,Ha designed to simulate events in the
lower two network layers, but is more detailed than NetSquid. Compared to SimulaQron and QuNetSim, o
the other hand, NetSquid is more complex to create applications at the application layer.

QuNetSim

QuNetSim

Repository https://github.com/tgsd/QuNetSim

Language Python

oS Crossplatform

Type framework for quantum networking simulatior
Focus Network

Feature Optional own backend

License MIT License

Website https://tqsd.github.io/QuNetSim/

Registration no

QuNetSimis a package written in Python that is
freely available and is suitable for testing
protocols quickly and easily. It is mainly aimed at
students and teachers who are looking for a
suitable demonstratoto learn and explain "high
level" protocols. The software simulates the
network layer in a quantum network without the
user having to worry about routing between two
hosts that are (in)directly connected by the
network topology. In addition, the simulatdas
mechanisms to control synchronization in the
network. In QuNetSim, you can also run a
classical and a quantum network in parallel in a
simulation, as is necessary for some algorithms.

The different backendsThe modular backend is
worth mentioning, which works witkimulaQron
by default, but can also be exchanged with other
backends such @&rojectQand EQSNIf you

prefer your own backend, you can integrate your
own library.

The installation with pig QuNetSim caft be
installed manually on Windows and Linux via
source code, but it is advisable to perform the
installation ina virtual environment in Python. A
description of how to create a virtual
environment can be found in the section on
installing Qiskit. We do the installation wigp
install qunetsim

Templatesare scripts that map or instantiate a network. To test these networks,
all you have to do is run the corresponding template. If you want to create new

templates, this is achieved viemplate

. This takes the user through a wizzard,

which asks what the new template should be called, how many nodes should be
created, which backend should be used, and what topology the hosts should form.
Among them: mesh, ring, star, linear and tree.

Hello Worldg After the installation is complete, we run the template scriptWe
now find a newpy script in the current path, which can be executed. This
already includes a kind of "Hello World" program, which in our case sends 5
guBits in the staté @from hostA to host B and is measured there.

The QuBit objedh QuNetSim is mainly a wrapper for the QuBit
located in the backend. The class is locategunetsim.objects.qubit
and is imported accordingly. Witin= Qubit(host, qubit=None,

g_id=None, blocked=False

) a QuBit can be instantiated and assigned to a

host. With the QuBit, some operations can now be performed. Among them, for

example:

H() Hadamard
X(0,Y0,Z0 Pauli
cnot(target) CNOT

15Cloning the repository and installing the requirements with pip

fidelity(other_qubit)
measure()
send_to(receiver_id)

Return of Fidelity
Measure
Send to Host

https://github.com/tqsd/QuNetSim
https://tqsd.github.io/QuNetSim/
https://tqsd.github.io/QuNetSim/
http://www.simulaqron.org/
http://www.simulaqron.org/
https://projectq.ch/
https://github.com/tqsd/EQSN_python

QuNetSim

density_operator() Return of sealing matrix

The hosis analogous to a host or a node in a classic network. It can route
packets, act as a relay, or follow special protocols. The class is located in
gunetsim.components.ho st and a new host is created with e.g
host_alice = Host('Alice’). Hosts are also connected to other hosts
through Connections. To do thispst_alice.add_connection('Bob")
andhost_bob.add_connection(‘Alice’) are executed, which
establishes two bdirectional connections, a classical connection and a quantum
channel.

The networlis a central component in any simulation. The networks must be
linked to hosts that have already defined their connections. Based on the
topology, different routingalgorithms can now be set up for the classical and
guantum channels. The shortest route is used as default.

Exampleg The code excerpt The following example={gurel?) is a network in
below is one example among many that can be which each participanis part of a linear network.
found here on the documentation website. Since Alice is connected to Bob, Bob to Eve, etc.; now
this is an example that mainly covers the basics, Alice wants to transfer 10 QuBits to Dean and
we will discuss the code excerpt in its entirety waits for a confirmation from Dean after each
here. Some things have already been described in transmission to make sure that the QuBit has also
the previous sections. arrived at Dean.

Figurel7: Example network QuNetSim

We start in linedl- 3 with the import of the and with adelay of 0.1 (line8). In the

required packageblost , Network andQubit . following (lines9- 22), the hosts are created,

In themain() function, a network is first linked to each other and started. To complete the
ingtantiated (line5), then a string array with the network configuration, the hosts are added to the
four participants is created (ling&) and finally network using thenetwork.add_host()

started with thenetwork.start(nodes) method.

method

1 from qunetsim.components import Host
2 from qunetsim.components import Network
3 from qunetsim.objects import Qubit

S

def main():

network = Network.get_instance()
nodes = ["Alice", "Bob", "Eve", "Dean"]
network.start(nodes)

network.delay = 0.1

o N o O

https://tqsd.github.io/QuNetSim/examples/send_data.html

QuNetSim

9 host_alice = Host('Alice")

10 host_alic e.add_connection('Bob")

11 host_alice.start()

12 host_bob = Host('Bob")

13 host_bob.add_connection(‘Alice")

14 host_bob.add_connection('Eve’)

15 host_bob.start()

16 host_eve = Host('Eve’)

17 host_eve.add_connection('Bob’)

18 host_eve.add_connection('Dean’)

19 host_eve.start()

20 host_dean = Host('Dean’)

21 host_dean.add_connection('Eve’)

22 host_dean.start()

23 network.add_host(host_alice)

24 network.add_host(host_bob)

25 network.add_host(host_eve)

26 network.add_host(host_dean)

27 for _inrange(10): # Create a qubit owned by Alice
28 g = Qubit(host_alice)

29 # Put the qubit in the excited state

30 g.Xx()

31 # Send the qubit and await an ACK from Dean
32 g_id, _=host_alice.send_qubit('Dean’, g, await_ack=True)
33 # Get the qubit on Dean's side from Alice

34 g_rec = host_dean.get_data_qubit(‘Alice’, g_id)
35 # Ensure the qubit arrived and then measure and print the
36 results.

37 if q_rec is not None:

38 m = g_rec.measure()

39 print("Results of the measurements for q_id are ", str(m))
40 else:

4 print('g_rec is none')

42 # Stop the network at the end of the example

43 network.stop(stop_hosts=True)

44 if _name__ =='_main__"

45 main()

In line28, Host Alice will create a qubit and
convert itto the e xcited state “1awith
the X gate (lin&0). Now everything is already

done to transfer the QuBit to Dean with
host_alice.send_qubit('Dean’, q,

to true, send_qubit() returns two values:
the qubit ID that was sent, and a boolean value
that indicates whether the ACK has arrived or
Alice has exceeded the maximum wait time.

await_ack=True) from line32. Alice will
then wait for confirmation from Dean before
continuing. Since thélag await_ack is set

Dean reads the QuBitin lir3g and then takes a
measurement (line37) if the transfer was
successful and outputs a string. This procedure is

QuNetSim

executed a total of 10 times (for 10 qubits) before standard for representing-fjubit states, we will
the network is stopped. find that this change of state corresponds to a
180° rotation of the vector around theaxis, see
Figurel8. This behavior corresponds to the
behavior of the classic NOT gate. The other two
gates work in the same way, only around the
corresponding axis.

Explanationin additian to
the PaukY and PaulZ gates,
the PaukX gate is a-QuBit
gate that inverts the input
QuBIt, i.e. from a stafe ar
AOAAOAO aadhdv@®AOA ~ p

versa.lf we look at this

behavior on the saalled

Bloch sphere, which is the

Conclusiorg QuNetSim is a simulator based on Python and thus written in a common
programming language suitable for beginners. It is very suitable for students and teachers, as well as use
who need a demonstrator or are looking for a suitable introduction to the topic of quantum technology. In
addition, this framework is aimed at interested parties who are already looking for an entry into networks
and expect that a network system has alrgdzben implemented. The documentation provided is detailed
and easy to understand and contains many examples.

Figurel8: How a PaulX
gate works

SILQ

SILQ

Repository https://github.com/eth-sri/silg

Language Q#, D, Tex, Python "

oS VS Code is required to install the Silq pilnig S I L 0
Type Quantum circuits “

Focus More intuitive semantics

Feature Uncomputation/Reset of QuBits to the Initial Ste

License FreeBSD License

Website https://silg.ethz.ch/
Registration No restrictions: download and install
without registration

Properties

Silgis a simulator that takes into account the-salled uncomputing of QuBits in simulatid®sThis

enables the automatic reset of temporarily required QuB#s-called Ancilla QuBitswhich are then
available for further operations. The simulator usesyatax that is specially designed for programming
with QuBits and has its own variable types for "classical" states and those states that are used to store
guantum states (superposition). Silg is based on the perspective of application developers and not
creating algorithms for a specific type of quantum processor. Matrix operations and tensor products are
not required for this: Instead, Silqg uses suitable variable types and permissible operators, which
significantly shortens the scope of code for ciegtalgorithms (e.g. groover algorithm). Other simulators
such as Cirq, Qiskit etc... are mostly based on Python or Matlab and are designed more for use on "classi
computers”. Silg, on the other hand, is specifically designed for the abstraction -tévehqubit

operations.

Installation

The easiest way to install Silg is to add Silg as a plugin in VS Code (Visual Studio Code). For the following
use case, the Silg plugin has been installed in VS Code on Windows 10.

Example

As a simple example, a Bell paincluding measurement is created in Silq:

1 def main(){2 x0:=0:B; 3 x0:=H(x0); 4 x1:=if X0 then 1:B else
0:B;
5 return measure (x0,x1);}

The function returns output with a probability of 50% either (0,0) or (T iiformula for the Bell pair is:

P o .
W —=9ta PO
78
In contrast, languages such as Qiskit are based on the concept of quantum gates or status vectors for
building a circuit for quantum entanglement:
gc = QuantumCircuit(2)

Apply H - gate to the first:

16 Sijlg A HighLevel Quantum Language with Safe Uncomputation and Intuitive Semantics: https://files.sri.inf.ethz.ch/website/papers/pldi20
silg.pdf

https://github.com/eth-sri/silq
https://silq.ethz.ch/

SILQ
gc.h(0)
Apply a CNOT:
gc.cx(0,1)

gobj = assemble(qc)result =
svsim.run(qobj).result()plot_histogram(result.get_counts()

As can be seen from the comparison of the two source codes, Qiskit requires an H and CNOT gate, while
Silg only needs an H gate and performs CN¥ith an ifelse statement (lines of code marked CNOT in
blue).

Uncomputationg Silq distinguishes between consumed and unconsumed variables, thus implementing the
concept of uncomputation. To explain this concept, three variables are connected by amRND

a0 Q0
On a classical computer, the results of such an operation are stored in temporary variables, e.g. the result
of x&&y.

X o o
y ® o
Z [

a o

Figurel9: QuBit gate uncomputation

First, the result of the operation x&&y is stored in the variable a. After that, the result of a&&z is stored in
r.r and a are in the initial state 0. If the fourth QuBit is to be used for further operations, it must return to
state 0. This is done by ®alled toffoli gates (orange circleskigurel9). Such gates invert a QuBit if both
inputs have state 1. This sets the state of QuBit a back to 0 by thegtied because both inputs (x&&y)

are true (=1). In the case of quantum computing, the uncomputation of variables is very important, as
there are only limited qubits available.

Consumable and neconsumable parametersSilq implements uncomputing in therfo of consumable

and nonconsumable parameters. Consumed parameters are those that are utilized by a function, e.g.
through a measurement. The quantum mechanical state after a function thus no longer depends on this
variable, but the result of the functiodoes.

SILQ

bell-silg.slgr=—""""_ o T *
variable 'x@" is not consumed
o bell-silg.slg(1, 1): at function return
1 det
2 View Problem Mo quick fixes available
3 i@:=HiKB:=;
4 ¥1:= if %8 then 1:B else 8:B;
5 /freturn measure (x8,x1);
=

Figure20: Error with unconsumed variable

Figure20 shows the error output if a variable is not consumed by the function. In the example, the
return statement with the measurement of the variable (cf. Code for the creation of the Bell state in

Silg).

To define parameters that are not consumed by a functibe following annotations are available in Silq:
const ,lifted andgfree . Example: Function parameters or expressions annotated in this way do not
change or destroy superpositions, i.e. gfree variables are automatically uncomputed after use and are
availble for further use:

def gfree_example(f: " 0 N £OQdrde{ "
return f(true); gfree Result

}

Non-consumed variables cannot store superpositions, only stable states such as |0> or |1>.

Result

With its unique syntax, Silgakes it possible to simulate processes such as entanglement and
teleportation largely without status vectors and matrices. The simulator is platfodependent, i.e. not
designed for a specific quantum processor or computer. Quantum algorithms sulcl @sdover

algorithm can be implemented in Silg with significantly fewer lines of code than, for example, in Qiskit
(cf1718),

The syntax used makes it possible to perform many operations with only a few lines of code, but this
increases complexity. Sinations based on gates and matrices, on the other hand, are easier to
understand than Silg simulations.

17 Groover algorithm in Silg: https://silq.ethz.ch/overview
18 Groover algorithm in Qiskit: https://qgiskit.org/textmk/ch-algorithms/grover.html

Google Quantum Al (Cirq)

Google Quantum Al (Cirq) \

Repository https://github.com/quantumlib/cirg
Language Python

oS Platformindependent: requires Pythor

Type Quantum circuits

Focus Testing algorithms (on a quantum bas ,
Feature Ecosystem

License Apache License 2.0

Website https://quantumai.google/cirq
Registration Unnecessary

Description

Cirg is a Python software library for writing, manipulating, and optimizing quantum circuits, which can ther
be run on quantum computers and quantum simulators. Cirq provides usefubabens for dealing with
today's noisy quantum computers.

Installation
C2NJAyaidlttlrdAz2y 2y 2AyYyR264&a> [AydzE 2Nl al O h{ .=
version of the package manager pip.

python - m pip install -- upgrade pip

python - m pip install cirq

To test whether the installation was successful, the following command is suitable:

python - c'import cirq_google; print(cirg_google. Sycamore)

A sascha@DESKTOP-50U42TS:~ X + ~

(cirg-env) sascha@DES)UU2TS:~$ python -c 'import cirq_google; print(cirg_google.Sycamore)’
(8, 5)—(o8, 6)

4)—(1, 5)—(1, 6)—(1,

H—7(2, 5)—(2, 6)—(2,

[e=h 4)—(3, 5)—(3, 6)—(3,

(4, 1)—(u, 4)—_(4, 5)—C(4, 6)—C(u,

(5, 8)—(5, 1)—(5, 4)—(5, 5)—(5, 6)—(5,

(9,
(cirg-env) sascha@DESKHTOP-50U42TS:~$ |

Figure21: Sycamore processor with 54 qubits from 2019

https://github.com/quantumlib/cirq
https://quantumai.google/cirq

Google Quantum Al (Cirq)
Regqistration

No registration is required to use the framework. However, if you shy away from a local installation, you
can also use Google's service called Colab, but this requires a login to a Google account. This service is
basically a Jupyter Noteboakone embedded in Google Drive. Colab is compatible with Jupyter and also
allows you to open and exporipynb files.

Example
try: import cirgexcept ImportError: print(“installing cirg...")
Ipip install -- quiet cirq import cirq print("installed cirq.")

Pick a qubit.qubit = cirq. GridQubit(0, 0)

Create a circuitcircuit = cirg. Circuit(cirq. X(qubit)**0.5,

Square root of NOT. cirg.measure(qubit, key="m") # Measurement.)
print("Circuit:")

print(circuit)

Simulate the circuit several times.
simulator = cirg. Simulator()

result = simulator.run(circuit, repetitions=20)
print("Results:")

print(result)

Circuit:
(0, 0) : bbbX” 0. 5bbbM(' m'") bbb
Results:

m=01110011010101001001

Result

With Cirg and Quantum Al (as well as the athigy players IBM and Amazon), Google offers not only a
framework for local installation, but an entire platform for the development and execution of algorithms.
Just like IBM, Google is also a leader in the development of its own hardware and alsa tifére user,

or allows remote access to globally available quantum processors and simulators, including AQT, Azure,

lonQ, Pasqgal and Rigetti. Researchers with approved projects can run jobs on Google's comprehensive
infrastructure.

SQUANCH

SQUANCH

Repository https://github.com/att-innovate/squanch

Language Python

oS Platformindependent: Python interpreter require:
Type Simulation of multiparty networks

Focus Simulation ofquantum networks

Feature contains classical and quantum error models
License WITH License

Website https://att -innovate.github.io/sqguanch/index.html

Registration No restriction

Description

SQUANCH is also an opmyurce Python framework for creating parallelized and distributed simulations of

SQUANCEH

guantum information. Although SQUANCH can be used asvarsal simulation library for quantum

computers, it was developed specifically for simulating quantum networks. It should be possible to test
ideas for quantum transmission and network protocols. The package contains several modules, including

extensible gantum and classical error models, as well as a multithreaded framework for the high
performance manipulation of quantum information.

Installation

As with all other simulators, it is recommended to install them in a virtual environment (Anaconda, VENV).
Under certain circumstances, a Python "distribution” should also be chosen, which already contains some

scientific packages such as matplotlib, iderto be able to use all functions easily.

pip install squanch

Structure and Modules

QStream

= [terable ensemble of separable N-qubit
QSystems optimized for cache locality

= State is stored in shared 1D array of C-doubles
typed as 3D array of np. complex64

Qubit | Qubit

[atpdiha |

QStream

QSystem
Represents a multi-body quantum system
as a density matrix in computational basis
Has qubits generator and QStream index
Measurement, state collapse methods

Qubit
Lightweight; has references to the parent
system and Qubit, QSystem indices
Can be transmitted between Agents
through quantum channels

Agent
Generalizes the notion of an actor (e.g.
Alice, Bob) that can transmit and process
classical and quantum information
Run in parallel from separate processes
Connected by Channels

{

Gates
Applies unitary operators to the state of
aQSystemor Qubit
Pads gates to fit an N-qubit system
Caches previously used operators

Errors
Applies quantum errors to Qubits
transmitted through Channels
Customizable error models

Channels
Simulates imperfect information
channels with list of error models
Synchronizes clocks between Agents
upon information transfer
Pass values between Agent processes

T

Figure22: Sourcenttps://att -innovate.github.io/squanch/overview.html#informatieepresentatiorand-processing

Above is a schematic overview of the modules available in the SQUANCH framework. The QSystem is the
most basic class and represents a mpérticle quantum sta¢ and is represented as a density matrix.
Ensembles of quantum systems are efficiently handled by QStreams, and each QSystem has references
its quabits. Functions in the Gates module can be used to manipulate the state of a quantum system.
Agents are geeralized quantum mechanical "actors" that are initialized from a QStream instance and can

https://github.com/att-innovate/squanch
https://att-innovate.github.io/squanch/index.html

SQUANCH

change the state of the quantum systems in their stream object, typically by interacting directly with
gubits. Agents run in parallel in separate processes andareected by quantum and classical channels
that apply customizable error models to the transmitted information and synchronize agents' €locks.

Example

The example is intended to show how a QStream including QSystem, which contains the QuBits, works in
the context of a communication between Alice and Bob. After creating a stream with two QuBits within a
QSystem, one of these two QuBits is modified by the Hadamard gate. The two communication partners al
children of the agent class and in this case areaaspble for sending, receiving and measuring. Both
partners share an output through which Bob communicates the result of his measurement. It is important
here that the logic is within the agents by overriding the respeativg) function.

from squanch import *
class Alice(Agent): def run(self): self.qsend(bob, a)

class Bob(Agent): def run(self): abob = (self.qrecv(alice)) abobm =
abob.measure() self.output(abobm)

stream = QStream(2,1)a, _ = stream.system(0).qubits

H(a)

out = Agent.shared_output()

alice = Alice(stream)bob = Bob(stream, out = out)
alice.qconnect(bob)alice.start()bob.start()alice.join()bob.join()

print(out["Bob"])

) B 4 % PRun B C B Code

[1]: from squanch import

[2]: class (Agent):

def (self):

self.qgsend(bob, a)
class (Agent):

def (self):
abobh (self.grecv(alice))
abobm abob.measure()
self.output(abobm)

[2]: |stream = QStream(2,1)
[4]: a, _ = stream.system(8).qubits
[5]: |H(a)

[6]: out = Agent.shared output()

alice Alice(stream)
bob Bob(stream, out out)

alice.gconnect(bob)

[7]: alice.start()
bob.start()
alice.join()
bob.join()

[8]: |print{out] 1)

1

19arXiv:1808.07047v1 [quaimh] 21 Aug 2018 https://arxiv.org/pdf/1808.07047.pdf

SQUANCH

lllustration23: Jupyter Notebook IDE

Result

SQUANCH is a universal simulatibrary for guantum computers with a focus on mapping quantum
networks. Due to the modular structure, users have various options for implementing algorithms and
protocols. The developers themselves offer many technical backgrounds and examples of Quantum
Teleportation, Superdense Coding, MamTheMiddle Attack and Quantum Error Correction in their

repository.

SeQUeNCe
SeQUeNCe

Repository https://github.com/sequencetoolbox/SeQUeNCe/
Language C++, Python, Makefile

oS Platformindependent: Python interpreter required
Type protocols, network parameters, and topologies

Focus Effects in quantum networks on the lower network laye
Feature Intermediate storage of quantum states

License Open Sourcéicense

Website https://sequencetoolbox.github.io/index.html

Registration No restrictions

Properties

SeQUeNCis an eventoriented, Pythorwritten, freely available simulator for the areas of (quantum)
hardware, management for entanglement, resources, networks and applic&tiorse simulator is

particularly suitable for simulating events in the lower network layers (hardware, connection layer): three
hardware components are required (quantum memory, quantum channel and detector) just to generate a
guantum superposition state.

Installation

Python3.7 or higher is required to install the simulator. SeQUeNCe can then be installed from the GitHub
repository using the following commands:

git clone https://github.com/sequence - toolbox/SeQU eNCe.qit
cd Sequence - python
pip install .

Example

As an application, the generation and measurement of a Bell pair in SeQUeNCe is shown:

Figure24: Hardware structure for creating entanglemént

The quantum memory ifigure24 consists of an atom, which in this example is in the superposition state:

P o
Wy —= Ju Ppa
q

The detector is used to measure the conditidine probability of measuring the state |0> or |1> is 50%.

20 Sequence Paper: https://doi.org/10.48550/arXiv.2009.12000
21 https://sequencetoolbox.github.io/tutorial/chapter2/hardware.htmi

https://github.com/sequence-toolbox/SeQUeNCe/
https://github.com/sequence-toolbox/SeQUeNCe/blob/master/LICENSE
https://sequence-toolbox.github.io/index.html
https://sequence-toolbox.github.io/index.html
https://github.com/sequence-toolbox/SeQUeNCe.git

